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twenty space/angle discretization sets of Bencnmark #2 for DBl, 
DB3 and DGF methods 61 

2.7. Maximtmi absolute signed scalar flux error ±||^|| tabulated for 
twenty space/angle discretization sets of Benchmark #3 for 
DBl, DB3 and DGF methods 77 

2.8. Maximum absolute signed angular flux error ±||ji' || for twenty 
space/angle discretization sets of Benchmark #3 for DBl, DB3 
and DGF methods 79 

2.9. Average absolute scalar flux error for DBl, DB3 and DGF methods 
for twenty discretization sets of Benchmark #3 84 

2.10. Relative sum error of pointwise scalar flux for DBl, DfeS 
and DGF methods for twenty discretization sets of Benchfeark #3. . 85 

2.11. Maximum absolute signed scalar flux error ±||jLi tabulated for 
sixteen space/angle discretization sets of Benchmark #4 for 
DBl, DB3 and DGF methods 92 

2.12. Maximum absolute signed angular flux error ±}^\\ for tVenty 
space/angle discretization sets of Benchmark M ?or DBl, DB3 
and DGF methods 94 

2.13. Average absolute scalar flux error for DBl, DB3 and DGF methods 
for sixteen discretization sets of Benchmark //4 98 

2.14. Relative sum error of pointwise scalar flux for DBl, 
DB3 and DGF methods for sixteen discretization sets of 
Benchmark //4 99 



LIST OF TABLES (cont'd) 

3.1. Maximum absolute signed scalar flux error ±||ig||„ tabulated for 
twenty space/angle discretization sets of Benchmark #5 for DFD 
and FEM methods ^21 

3.2. Maximum absolute signed angular flux error ±\\^\\ for twenty 
space/angle discretization sets of Benchmark #5 for DFD and 
FEM methods 123 

3.3. Average absolute scalar flux error and relative sum error of 
pointwise scalar flux for DFD and FEM methods for twenty 
discretization sets of Benchmark #5 127 

A.l. Computational equations for q (x,y) 134 
n 

A.2. Partitioning of the integration domains D for I(v,y) 136 

A.3. Subdomain integration formulas 138 

A.4. Numerical integration of G„ (x,y) 140 
3p 

LIST OF FIGURES p 

1.1. Simplified logical flow diagram for BEAPAC-IT 16 

1.2. Approximation of A(v) by Chapeau functions 22 

2.1. Flux distributions for Benchmark #1 46 

2.2. Scalar flux error ̂  for DBl, DB3 and DGF methods for eight 
selected discretizations of Benchmark #1 49 

2.3. Angular flux error traverses ijj (0,y) for DBl, DB3, and DGF 
methods for eight selected discretizations of Benchmark #1 . . . . 52 

2.4. Angular flux error traverses <(; (.5,y) for DBl, DB3, and DGF 
methods for eight selected discretization sets of Benchmark #1. . 53 

2.5. Angular flux error traverse ij; (l,y) for DBl, DB3 and DGF methods 
for eight selected discretization sets of Benchmark #1 54 

2.6. Flux distributions for Benchmark if2 58 

2.7. Scalar flux error <\>Ax) for (a) DBl, (b) DB3, (c) DGF methods 
for eight selected discretizations of Benchmark #2 60 

2.8. The function g(v,c) 62 

2.9. Angular flux traverses for DB3 reference solution 
(h = .125, DP_) 64 

o 



LIST OF FIGURES (cont'd) 

2.10. Angular flux for Benchmark #3 66 

2.11. Comparison of reference and benchmark solutions for 

Benchmark #3 67 

2.12. Combining coefficients A(v) and a ± from least squares 
modes analysis "9 

2.13. Contributions of elementary solutions a q (x,y) to ij; (x,y) 
in Benchmark #3 ^.^ 70 

2.14. Detailed enlargement of elementary solution contributions 

to Benchmark #3 71 

2.15. Angular flux for Benchmark //3A 72 

2.16. Comparison of reference and benchmark solutions 
for Benchmark #3A 73 

2.17. Contributions of elementary solutions q (x,y) to '̂nĈ '̂ )̂ 
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AN AUTOMATED APPROACH TO QUANTITATIVE ERROR ANALYSIS 
IN NEUTRON TRANSPORT CALCULATIONS 

by 

Erwin H. Bareiss and Keith L. Derstine 

ABSTRACT 

A method is described how a quantitative measure for the 
robustness of a given transport theory code for coarse network 
calculations can be obtained. A code, that performs this task 
automatically and at only nominal cost, is described and has 
been implemented for slab geometry. This code generates also 
user oriented benchmark problems which exhibit the analytic 
behavior at interfaces. 

INTRODUCTION 

The problem which we address here is concerned with ascertaining the 

reliability of neutron transport calculations by high-speed computers. 

Today's general approach is to check one computer code against another, 

often for mathematically not identical problem settings. The best way of 

checking approximate numerical calculations is to compare the results 

against mathematically exact solutions. Unfortunately, in transport 

theory such solutions are, in general, not available, or if available, 

they are very expensive to obtain. There is however the possibility to 

create benchmark problems with given meaningful exact solutions. 

What we have started is a new discipline in Numerical Analysis, 

namely Quantitative and Computerized Error Analysis. Clearly, this 

discipline can be (and is) applied to other operator equations than the 

transport equation. Traditionally, a new numerical technique was con

ceived, analyzed for qualitative error bounds, implemented in a computer 

code, tested against other codes, and then distributed. An alternative 

approach is to make a systematic analysis of the mathematical properties 

of the solution and the new technique, and then test the theoretical 

predictions on inexpensive well designed small numerical benchmark 

problems. The basic difference between classical or qualitative error 

analysis and the quantitative error analysis is that in quantitative 
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error analysis we aim at obtaining realistic error bounds for coarse mesh 

calculations and performance predictions before a code is implemented. 

What we do can be described by mathematical expressions, but the formulas 

are very lengthy, complicated and difficult to evaluate. For all practi

cal purposes analytic coarse mesh error analysis would be much too 

expensive and too time consuming. Our automated approach yields not only 

new insight, but simultaneously provides numerical results that give a 

quantitative assessment of the approximation method under Investigation. 

It is a new type of analysis that combines modern and classical analysis 

with computer technology and computer graphics. A very high efficiency 

is possible because we exploit the use of dimensional analysis and 

invariant theory. This is important, since the operators we deal with 

are linear. We have now available a systematic and complete tabulation 

of all scaling, translation, rotation and other group properties of the 

transport equation. [Inonu 1975] 

To give a perspective of an application of the procedures described 

in this report, we shall briefly outline the major parts of our research 

project. This report is concerned with part A only. 

The entire code system, when the project is finished, will consist 

of three parts with the following functions: 

A. Cell Calculations (including 2-Cell Calculations) 

B. Global Analysis 

C. Computational Complexity 

A. The code for part A is again subdivided into three major parts. 

a) Creation of Benchmark Problems 

b) Numerical Solution of the Benchmark Problems by 

Approximate Methods 

c) Calculation of the Error. The user will specify the 

appropriate error norm. 

Part A can also be characterized by calling its purpose Basic Quantita

tive Error Analysis. It is designed to evaluate the desired error norms 
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for calculations over a coarse network or with large finite elements. To 

our knowledge there exists no other systematic approach to deal with the 

coarse mesh error analysis. As will become evident, such an analysis is 

practical only by automation and use of the computer. 

B. The codes for part B will conduct a global analysis for multi-

region, multigroup calculation. The algorithms will be subject 

to: 

a) Global Error Analysis 

b) Stability Analysis 

c) Convergence Analysis 

We note that the classical concept of consistency analysis does not appear 

explicitly. The codes will supply various error bounds. However, the 

main goal is to provide Probabilistic Error Estimates. Research in all 

areas is underway. The tools employed are borrowed from functional 

analysis, perturbation-, matrix-, operator-, and probability theory and 

statistics. 

C. The codes for part C are concerned with computational complexity. 

By this we understand: 

a) Performance Prediction 

b) Code Evaluation 

c) Data Management Analysis 

Basically, part C is cost accounting. It will be based on the total 

operations count (inclusive iterations count), error estimates, and memory 

requirements. It will also provide a ratio of the actual operations count 

of the implemented transport code to the theoretical minimum operations 

count as determined from the mathematically defined algorithm. If this 

ratio is much greater than one, the entire program (computer code as well 

as theoretical background) should be investigated for potential signifi

cant reductions in computer time. 

This report describes the development of the one-dimensional phase 

of Part A outlined in the previous paragraphs. It also describes the 
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implementation of the procedures in BEAPAC-IT, a FORTRAN program opera

tional at Argonne National Laboratory on the IBM 370/195. (A simple pre

processor described in the User's manual [Bareiss and Derstine 1977] is 

provided to facilitate conversion to CDC 6000 or 7000 series installations.) 

The present code is designed for the one-dimensional transport equation and 

supplements the theoretical results presented at the Fourth National Con

ference on Transport Theory [Zweifel, Greenberg 1976], which was concerned 

mainly with one-dimensional problems. 

Section I details the major steps of the benchmark error analysis 

procedure applied to one-dimensional transport problems. To maintain 

presentation clarity, special derivations are included in the Appendices. 

Sections II and III are each devoted to a different form of the transport 

equation. Each section summarizes in matrix form selected numerical 

approximation methods applied to its form of the transport equation. 

Results from the application of the theory in Section I applied to the 

approximation methods in II and III by BEAPAC-IT are presented and dis

cussed. The conclusion assesses the experience gained with BEAPAC-lT and 

proposes future directions to be considered. 

The guiding principle of the project is to store on tape for easy 

access and in computable form the theoretical knowledge of numerical 

analysis which is pertinent to the quantitative (numerical) solution of 

neutron transport problems, algorithms for approximate solutions and 

special functions from instructions for their proper use. The output is 

in tabular form and in visual displays, meaningful to the engineers and 

scientists who are not specialists in numerical analysis. A systematic 

analysis of a code requires detailed attention, knowledge, and time. As 

we will demonstrate, BEAPAC-IT can do this tedious work fast and 

economically. We want to point out that for an extensive error analysis 

using Part A, the computer costs are only a fraction of a dollar. This 

performance cannot be matched even by a very experienced numerical analyst 

or engineer. 
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I. THE BENCHMARK ERROR ANALYSIS PROCEDURE 

BEAPAC-IT stands for Benchmark Error Analysis Package for one-

dimensional Transport theory calculations. Figure 1.1 shows the master-

flow chart. We shall discuss the function of the different boxes, but for 

a more detailed description we refer to the text and to the User's manual 

[Bareiss, Derstine 1977]. 

In general a benchmark solution i(j„ is given as a linear combination 
a 

of known exact eigenmodes with combining coefficients a . i|; is a 
in L 

computed (i.e. approximate) solution to the given benchmark problem 

uniquely defined by ^ „ . With ij; and i|) available, an error analysis can 
o B C 

be performed. 

Often, one wishes ^ to have a certain shape, ^) . ^ is called the 

reference solution and may have been obtained from an approximate calcula

tion. It will not satisfy the transport equation. BEAPAC-IT employs an 

algorithm to find an exact solution i)j to the transport equation, which 
B 

satisfies \^ on a selected subset of fluxes ^p in a least squares sense. 

The first tenets for the implementation of BEAPAC-IT are to give the 

user Freedom to set his own Standards and Flexibility in Applications. 

BEAPAC-IT is therefore an open-ended (expandable) collection of subrou

tines. The user chooses his own performance criteria for his particular 

problem by calling available options. 

Although the linear neutron transport equation is mathematically 

uniquely defined, there are several forms of the transport equation which 

are mathematically equivalent. At this time, the user has the option to 

base his tests on the following stationary operator equations: 

Stochastic Transport Equation (Standard form) [Davison 1957] 

Symmetrized Transport Equation (Canonical form, Vladimirov 

equation) [Vladimirov 1963] 
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INPUT AND 
INITIATION 

CALCULATE\^ yes 

h y^ 
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CALCULATE ^^ AND '/'̂  
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BOUNDARY CONDITIONS 
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ERROR ANALYSIS 

OUTPUT 
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CALCULATE APPROXIMATE 
SOLUTION ^ BY SELECTED 
NUMERICAL METHOD 

Figure 1,1. Simplified logical flow diagram 
for BEAPAC-IT 
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1.1 Creation of Benchmark Problems for the One Speed Transport Equation 

To specify benchmark problems is in general not a too difficult job 

for an engineer [ANL-7416, 1968]. However, to design meaningful bench

mark problems for which the exact answer is known, proved rather difficult. 

It is necessary to have knowledge of the analytic behavior of the solution 

at interfaces, boundaries, and corners (for multi-dimensional calculations). 

Historically, the solution of differential equations was based on 

"Hard Analysis." The more recent approach to numerical methods is based 

on "Soft Analysis." The solution is imbedded in a given Sobolev space. 

This approach is good for asymptotic error analysis, for proving 

existence-, convergence- and consistency-theorems. However, it is not 

sufficient for analyzing "coarse network" calculations. We have shown 

early in our research by pilot calculations that some "low" order algorithms 

gave better results than "high" order methods. An illustration of this 

fact is given in [Bareiss 1971]. 

1.1.1 The transport equation in computational cells 

The one speed neutron transport equation in a homogeneous computa

tional cell D(0,a) is given by 

(1.1) y-g (x,y) + a ,ji(x,y) - ^ 
J 
i(»(x,y')dy' = S 

-1 

where 

ijj(x,y) is the neutron angular flux 

a is the macroscopic total cross section (cm ) 

c is the macroscopic average number of secondaries per collision 

ac is the macroscopic scattering cross section 

S is a constant distributed source of neutrons 

y is the cosine of the angular direction (y = cos 9) 

X is the spatial distance perpendicular to the plane of the 
infinite slab 

D(0,a) denotes the domain 0 <̂  x £ a and |y| £ 1 
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A particular solution of (1.1) is 

\b = S/a(l-c) 
P 

which is a constant. 

The associated homogeneous equation to (1.1) is 

fl 

(1.2) 3x 
y -r^ (x,y) + a t|)(x,y) - -r-crc 

2 
-1 

ij;(x,y')dy' = 0 

The general solution of (1.1) is the superposition of the particular 

solution and the general solution of (1.2). 

The neutron mean free path length (the average distance traveled 

between collisions) is given by a . The transformation 

z = a(x')dx' = ax 

0 

applied to (1.2) expresses distances in terms of mean free paths and 

(1.2) becomes the dimensionless form of the transport equation 

(1.3) y -^ (z,y) + \i>(z,\i) - "I 
dZ Z 

i|/(z,y')dy' = 0 

-1 

Obviously, it is sufficient to investigate the analytical behavior of 

the homogeneous equation (1.3). 

1.1.2 Elementary solutions to the transport equation 

Case [1967] showed and Bareiss [1966] gave a mathematically rigorous 

proof that the general solution i|;(x,y) to (1.3) in an infinite slab is 

composed of linear combinations of elementary solutions. The solution is 

given by 

(1.4a) 
-x/v 

0 
+x/v. 

^(•x.,Vi) = a d) (y) e '^ + a i> (y) e 

" 0 " 0 

A(v) (t.^(y)e"''^''dv 
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+ 
where the (\i^ (y) are called asymptotic solutions, and a_ are constant 

0 
expansion coefficients. 

where ± VQ are the roots of the characteristic equation 

(1.6) i _ ^ , n ( ^ ) = 0 . 

For c £ l , l £ v < « ' , for c > 1, v = ik„, 0 < k < •«>. 

The transient solutions with HSlder continuous expansion function 

A(v) are defined symbolically by 

(1.7) (l.̂ (y) = I P ̂ p ^ + X(v) 6(v - y) | v | l l 

where 

(1.8) X(v) = 1 - f V J!'n(-^^) 

is the dispersion function. 

The definition (1.7) is valid only under integration where P indi

cates Cauchy principal value integration and 6(v - y) is the Dirac delta 

distribution function (Stakgold 1969) defined by 

6(x - X )f(x)dx = f(x ) . 

Bareiss [1966], Abu-Shumays and Bareiss [1969], HMngelbroek [1973] and 

Larsen [1975] showed completeness of (1.4a) and conditions for the space 

of the coefficient functions A(v) in different function spaces for the 

solutions ij;(x,y) . 

1.1.3 Construction of benchmark problems from elementary solutions 

Our objective is to create benchmark problems to a known exact 

benchmark solution ij/ (x,y). This solution will have the foinn 
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N 

(1.9) *g(x,y) = I a^^ q+n^^'^') • 
n=0 

The q (x,y) are a set of appropriately chosen analytic functions which 

satisfy (1.3); the a are appropriately chosen combining coefficients. 

The construction of the q (x,y) as used in the present code BEAPAC-IT 
n 

[Bareiss, Derstine 1976] is described below. We emphasize that this 

represents only one realization of many possibilities. It demonstrates 

a general method to construct "Eigenmodes" q (x,y) based on an established 
n 

theory. 

We generate arbitrary problem (1.9) based on the solution (1.4a/ 

as follows: 
Rewrite (1.4a) as 

+ "^^"^0 -(a-x)/vQ 
(1.4b) 'l'(x,y) = a^ <\>^ (y) e + ^^ (j)_ e 

where 

0 

-a/v 

/̂"dv + \ \ A(v) 4'̂ (y) e ''/''dv + rA(-v) ^^(-u)e~^^~''^^''dv 

^0 = ̂ 0 ̂  
0 

-a/v 
A(v) = A(v)e 

A simple physical motivation can be given for (1.4b). The terms 

with the e factor represent decay of neutrons from a source at x = 0 
-(a-x) ' 

while the terms with the e ^ factor represent decay from x = a. 

We denote the asymptotic coefficients at, a" by a^ and a 

respectively; likewise q„ and q „ are defined by 
rJ -N 

(1.10a) qî (x,y) = (t- (y)e ° 
"̂0 

-(a-x)/v 
(1.10b) q_N(x.^) = •t' (-P)e ° 

^0 
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The transient coefficients are obtained by requiring the A(v) to 

have the form 

N-1 
(1.11a) A(v) = y a 9 (v) _̂ n n n=0 

N-1 
(1.11b) A(v) = I a__^Q^(-v) 

n=0 

0 < V < 1 

-1 < V < 0 

where the 9 (v) must be Holder continuous functions. Except in the 

neighborhood of v = ±1, we represent A(v) by a superposition of Chapeau 

functions (linear splines) — see Fig. 1.2 — defined by 

(1.12a) 

V - V n-1 
Av 

9^(v) = <; 

n-1 

^n+1 - " 
Av 
n 

V ., < V < V 
n-1 — — n 

n = 1,2,...,N-2 

V < v < v , T n=0,l,...,N-2 
n — — n+1 

otherwise 

where Av = V ,, - V 
n n+1 n 

for the discretization of v given by the N+1 nodes 0 = v ,v..,...,v = 1. 

When n = N-1 a special basis element 9 .. (v) defined by 

(1.12b) 

V - V. 
N-2 

Av, N-2 
V < V < V 
N-2 - - N-1 

Âv,, .-' N-1 < V < 1 0 < a < 1 
N-1 

0 otherwise 

is introduced so that we obtain an appropriate approximation basis in the 

neighborhood of v = ±1. In Section 2.2 we will show the effects of this 

element on the approximation. 

It is also obvious that the Chapeau functions can be replaced by 

other functions such as cubic splines. 



^-(N-1)®-(N-1)(^> A(v) 

ViVi(^> 

ho 
ho 

Figure i.Z Approximation ot A(v) by Chapeau Functions 
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Upon substitution of (1.11a) into the first integral of (1.4b) we 

define 

(1.13a) q^(x,y) = 
f^n+1 _x/v 

0 (v ) f (y)e ' dv (n = 0,1 N-1), n V 

^n-1 
By synmietry arguments we find 

(1.13b) q_^(x,y) = q^(a -x , -y ) (n = 0 , 1 , . . . , N - 1 ) . 

As shown in the Appendix A.l, the integrals in (1.13) are manipulated 

analytically to obtain exponential integrals. Appendix B shows how the q (x,y) 

Le. the E ' (x) and I ' (x,y) can be evaluated very accurately using 
n n 

the exponential integral routine DEI in the ANL Applied Mathematics 

Division program library [Cody 1971]. Substitution of the elementary 

modes q (x,y), so obtained, into the transport equation yields a residual 
^ -15 -12 

on the order of 10 for q̂  (x,y), n=0,l,...,N-2 and 10 for q^. .(x,y). 

Using a set of coefficient values [a^ ,a^ ,... ,â . ] we can evaluate 

(1.9) numerically at any point (x,y) in D(0,a) with as much accuracy as 

needed, hence these solution values are considered exact for all practical 

purposes. Hence the benchmark solution li' (x,y) of (1.9) is well defined, 
B 

and ^ (x,y) for x=0,x=a can be used to specify the inhomogeneous boundary 
B 

conditions 

(1.14a) B̂ ipg(0,y) = f^(0,y) y > 0 

(1.14b) B2<l̂ g(a,y) = f2(a,li) P < 0 

for a finite inhomogeneous boundary value slab problem. B and B are 

boundary condition operators chosen by the user to create specific 

benchmark problems with the known exact solution i|; (x,y). For example, 

if an incident flux boundary condition is specified at x=0, then 

f,(0,y) is defined by 

f3̂ (0,y) = 4'B(0,y) U > 0. 

Discussion of available boundary conditions for each form of the transport 

equation are found in the corresponding Sections II and III. 
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1.1.4 Automatic superposition of elementary solutions 

In this section we develop two algorithms for generating the combin

ing coefficients a for a one-cell benchmark solution 

N 
(1.9) .ĵ g(x,y) = I a^q^^(x,y). 

n=0 

From a purely mathematical standpoint any choice of coefficients 

a defines an exact solution to (1.2). Practical considerations suggest 
n 

that benchmark solutions with physically meaningful solutions are 

desirable. Such solutions will enable us to analyze the error behavior 

of an approximate numerical method at cell boundaries and interfaces. 

The two algorithms considered require an initial angular flux dis
tribution ij; (x,y) specified for discrete directions 1 > y, > U^ ^• • • tVx,^ ~^ 

~A — 1 2 M 

at the boundaries of the cell of interest. <K(x,y) is usually obtained 

by solving a multicell problem via some standard approximate transport 

theory method such as the discrete ordinates method, jj;̂  (x,l-) is the 

angular flux solution values calculated in the cell of interest. The 

distribution jfc.(x,y) serves only as a device to drive the coefficient 

generation algorithms. The resulting benchmark solution i/;-,(x,y) will be 

a perturbation of jĵ  (x,y) 

N 
(1.15) Jt.(x,y) ~ I a q (x,y) + a q (x,y) 

n=0 ^ """•" 

but once we have calculated the a we forget about the original 

]t. (x,y) and proceed to generate benchmark problems based on ijj„(x,y). A B 

In the first algorithm the coefficients a are chosen to minimize 
n 

the approximation error in (1.15) in the discrete least squares sense. 

The problem is mathematically defined by 

(1.16a) llQa - ^^^\\^ = min 

where Q is the M x (2N+2) rectangular matrix ((2N+2) _< M). The 

columns q of Q are defined by 

M 
r, - fn f^ W (m = 1,2,... ,—, 1 - 1) 
q - (q„(x.,y„)) 2 

(m = Y + 1, - -I- 2,...,M, i = 2) 
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.+ where (p = 1,2,...,N) corresponds to (n = 0 ,1,2,...,N-1), 

(p = N+1,...,2N) corresponds to (n = 0~,-l,-2,...,-N+l) 

(p = 2N+l,2N+2) corresponds to (n = N,-N) 

a = [ag.a^. 'Vl'^-0'^-1' '^-N+1'^N'^-N^ 

on the discrete set of space points and angular directions for the numer

ically given flux values {'iJ.(x.,y )}. To approximate the continuous 

least squares problem corresponding to (1.16a), Q and ^ ^-e modified by 

the angular and spatial weights to . of the corresponding numerical inte-
mi 

gration. Hence, the actual problem solved is 

(1.16b) 
'̂ - ~ •̂ "̂2 " ^^^ 

where Q = ("™-j^„(^-i'l^n,)) ml p 1 m 

and *A= ̂ VV^i'V^ 

A simple modification to the problem of (1.16) permits the inclusion of 

K <̂ M linear constraints on the approximation at particular points (i,m) 

in the equations (1.15) and their corresponding rows in (1.16). If we 

permute the rows of (1.16) such that the K equations which must satisfy 

linear constraints are first, the least squares problem with linear con

straints becomes 

(1.17) 
Q'='= 

,«<= 

1 

1 

1 1 
1 
1 
1 
1 

Q™ 

Q™ 

r G ' 
â  

H 
a 

- = 
0 

min 

where the linear constraints are represented by 

G 
(1.18) [ Q^^ I Q ^ 

H 
€ 

and where the partitioned submatrices of Q and vectors a_ and j; have 
A 

dimensions 
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(T: 
O"": 

G 
a : 

~^-

K X K , Q " " : 

ITU 

(M-K) X K, Q : 

K , a " : 

K . ! « : 

K X (2N+2-K) 

(M-K) X (2N+2-K) 

2N+2-K 

2M-K 

K < M 

The procedure for solving (1.17) has three major steps which are 

(a) Perform the first K steps of the forward sweep of the Gaussian 

elimination algorithm on (1.17). 

(b) Perform the Householder least squares minimization on the remaining 

(M-K) equations modified by step (a) 

(1.19) 
I;;HH H 7 H|| 

/vTJlI ^ TJ 

(where Q , jj; are the modified matrix and vector from step (a)) 

to obtain the coefficients â  . 

(c) Perform the backward substitution of the Gaussian elimination algo-
H G 

rithm on the first K equations using â  from step (b) to obtain â  . 

The second algorithm obtains the coefficients a by evaluating 
n 

analytic formulas based on related formulas [Case 1967] for the infinite 

medium problem. The asymptotic coefficients are defined by 

(1.20a) 

where 

N 

± 1 I ^ 
aQ = — y<))Q(y)i|j(y)dy 

0 -1 

(1.21) 

\l)(.\i) is the angular flux distribution 

1 

^0 = 
± 2 

y[<t>Q(M)] dy 

( 1 . 2 2 a ) 

The t r a n s i e n t c o e f f i c i e n t s f u n c t i o n A(v) i s d e f i n e d by 

• 1 

A(v) = 
N(v) y(ti^(y)i|j(y)dy 

- 1 
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where 

(1.23a) N(v) = 
g(v,c) 

and 

(1.23b) g(v,c) = 
[A'(V) + m ' ] 

In order to use equations (1.20) and (1.22) we need a flux distribu

tion tjj(y) . The initial angular flux distribution vector ĵ)̂  (x,y) can be 
A 

used for this purpose in the following way. (Note that we are again 

using jj)̂  (x,y) merely as a device for obtaining coefficients a to a n 
benchmark solution i|j (x,y) which is some perturbation of j;. (x,y).) 

15 A 

Recall that the elementary modes q^(x,y) (n = 0 ,1,...,N) decay 

exponentially from the left boundary of the slab, whereas q^(x,y) 

(n = 0 ,-l,...,-N) decay exponentially from the right boundary of the 

slab. Using this knowledge we determine the coefficients a for 

(n = 0 ,1,...,N) and (n = 0~,-l -N) by replacing T;;(y) in (1.20) and 

(1.22) by j|)̂ (̂0,y) for n >̂  0 and jĵ .̂ (a,y) for n _< 0. To simplify the 

integration in (1.20) and (1.22) we replace the vector ii).(x,y) by 

'I'. (x,y) , the piecewise linear function defined as follows: 

(1.24) ^.(x,y) = I .J; (x,y )9 (±y) 
£=0 

where 

(1.25) e,(y) = i 
y - VI £-1 
Ay £-1 

y < y < y 
^Z - ^ - ^£+1 

^̂ £+1 ̂  '̂  ^ ^£ 

y otherwise 

£ = 0,1,...,L-l 

A/ J . y ^ y « * « y J . j 

^ ^ = ^+1 - ̂ £ 
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for 0 = y < y <...< y, = 1. Note that this representation permits 
0 1 •'-' 

discontinuities in the flux at y=0 since 0^_(y) has coefficients 

'|'A(x,y^^). The representation (1.24) enables us to perform analyti

cally the integrations in equation (1.20) and (1.22) involving the 

singular eigenmodes and the piecewise linear angular flux 4*4(x,y). The 

computational formulas for (1.20a) and (1.22a), are 

(1 .20b) + ^ J^ 
'O " N+ J 

0 - 1 

y4>o(y)'J'A(0,y)dy 

and 

3^ J„ V°'̂ ±£̂ P±£̂ ^̂  
N Q £ = 0 

( 1 . 2 0 c ) 
a / v . 

^O = ^0 ^ 

J, 
N" 

P<t>Q(p)'i' ( a , y ) d y 

0 - 1 

1 ^ 
= ::= J. V '̂̂ '±c>p±£^^^ 

N Q £ = 0 

(1 .22b ) A(v) = 
N(v) 

y<t) ( y ) i | ' . ( 0 , y ) d y 
V A 

- 1 

(0 < V < 1) 

= g ( v , c ) I ^pAO,v+ )p (v) 
1=0 

£ ' " ± £ 

( 1 . 2 2 c ) A(v) = 
N(v) J 

y't>y(vi)'<'A(a,y)dy 

- 1 

( - 1 £ V j< 0) 

g ( v , c ) I ^|>Aa,^^.)p^Av) 
£=0 A^° ' ^±£ '^ '±£ ' 
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where 

(1.26) P,(v) = V 
£+1 

'£-1 

y<l'y(y)0ĵ (y)dM, 

When V 4 V^* Pp('̂ ) Is defined as follows: 

P(^'^'"£+l^ £=+0,£=-L 

(1-27) p+ĵ (v) = f<p(̂ .̂ J£.PĴ ,+l) - p(v.yĵ ,Pĵ  3^))+ej^(v)X(v) £=±i,±2,..., 
±(L-1) 

- P(^'^£'Vl> 

and when v=yjĵ  

P£(^) 

Ay, 

pp(p,,vi'^£+i)r ^^^^ 

Ay„ 
£-1 

where 

£=L, £=-0 

£=0 

'^"X y^CyavayJ-l X 

£=-0 

(1.29) j(v,a,b) 
b-a _̂  (b-v) T v-a 

b-v 

(1.30) pp(v,a,b) = p(v,v,b) - p(v,v,a) 

(b-a) 
+ V log v-a 

b-v 

Note that p (1) and p ̂ (~1) are undefined since ^(±1) is undefined. How-L —L 

ever, we know from analytic considerations that A(±l) = 0, hence we may 

omit the calculation of A(±l). Note also that both asymptotic and transient 

modes are treated by formulas (1.26) to (1.29). 
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1.1.5 Residual checking of the benchmark solution 

Two related quantities to the q (x,y) are available in BEAPAC-IT. 
" (1) 

They are the elementary angular flux derivative q (x,y) and the 
(-1) ^ 

elementary scalar flux q (x). 
n 

These quantities have several useful roles. The elementary scalar 
flux q (x) is defined by 

n 

(1.31) q̂  ^\x) = j q̂ (x,y)dy 

-1 

and computational expressions are derived in Appendix A.3. It may be used 

to Investigate the discretization error and truncation error in the numer

ical integration of the angular flux. The elementary angular flux 

derivative is defined as 

rn 3q„(x,y) 
(1.32) q„ ̂ x,y) = - \ ^ 

n ox 

and computational expressions are derived in Appendix A.2. Given a , 
(-1) (1) ^ 

Q , and q we can calculate the scalar flux 

N , 
(1.33) * (x) = I a qi'^^x) 

^ n=0 -" *" 

and the angular flux derivative 

Biĵ  (x,y) N 

n=0 

exactly. 

Given i|;g(x,y), (j) (x) , and ^ ^̂  we can compute a residual vector 

r̂  where r̂  is defined on a given reference net by 

(1.35) L ^ = y ^^ly^ +ii^(x.y) - f 1B(X) = r . 

The underlined symbols represent computed quantities. 
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Evaluation of (1.35) provides a method for checking the pointwise 

accuracy of the elementary solutions q (x,y). Numerical experiments 

have consistently shown bounds of the order 

J10 
-15 

-12 

standard basis elements 

special basis element 

1.1.6 Two cell problem considerations 

The preceding discussion was directed toward one cell problems. We 

would like to point out that a variety of interesting problems can be 

treated in the one cell case. We may solve a large one-dimensional 

complex reactor configuration by some production code, then successively 

select cells of interest and analyze the reliability of the solution in 

each cell with the technique just discussed. In this case, we can ob

serve local boundary and interface effects on the numerical method. 

We solve two cell problems to observe the solution behavior at the 

cell interface where now the flux values are not specified at the inter

face. 

The two cell problem is represented by the operators 

(1.36) 

and 

(1.37) 

(1.38) 

(1) 
3x 1 

a.c. 
1 1 

H-1 
dy 

-1 

L(^>,(^>(x,y)=S^ 

_(II),(II), . -II 
L ijjg (x,y) = S 

(1 = I,II) 

0 < X < a 

a < X < b 

with interface condition 

(1.39) 1'̂ ^̂ (a,y) = ii-™(a,y) 

The particular solutions due to the constant sources S and S in each 

cell are given by 
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The homogeneous solutions i|)„ (x,y) and ^^ (x,y) are obtained in turn 
H H by the procedures of sections 1.1.3 and 1.1.4, using an Initial flux 

distribution ^^\X,M) and if)j^^\x,] 

solutions in cells I and II are now 

distribution ^[ (x,y) and tĵ '̂'"•'"̂  (x,y) for the two cells. The benchmark 
A A 

(1.41) ^i^\x,M) = ^^^Ux,v) + ^^^^ (i = I,II). 
i> tl p 

To satisfy the continuity condition (1.39) an angular dependent source 

term Q(y) is added to cell II. 

Let 

(1.42) ^^"\x,y) = *g^"^(x,y) + (/^^\a,M) - 4'^^^^a,y)) 

so that (1.39) is satisfied. Equation (1.38) is now replaced by 

(1.43) L^"^4^^^^\x,y) = Sjj +Q(y) 

where 

Q(y)=L™(,<I)(a,y)-,™(a,y)) , 

I.e., 

•̂B 

o^^c. 
(1.44) Q(y) = aj,(*^^>(a,y) - ̂ ^")(a,y)) - - ^ (*^^^a)-*™ (a)) 

since the derivative term of the operator is zero in this case. The 

interface condition is now exactly satisfied for ii;̂ (a,y) = ii?̂ '̂ (a,y) by 
B B 

(1.42). 
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1.2 Solution of Benchmark Problems by Approximate Numerical Methods 

We are now ready to test a numerical method to solve the transport 

equation with the solution ijj_. BEAPAC-IT contains a set of subroutines 
a 

for the numerical solution of the transport equation by methods which are 

widely used. They are all in a standard form. The numerical methods are 

reduced to the problem of solving a linear matrix equation of the form 

(1.45) Av = ;b. 

Hence, a particular subroutine contains instructions to calculate the 

elements of the matrix A and the vector b̂ . The process is as follows. 

First, the desired network D (0,a) is set up. Then the necessary 

boundary values f (0,y) and f (a,y) are calculated. With this informa

tion the elements of A and b are calculated, and the linear equation is 

solved accurately by a direct method, usually by Gaussian elimination 

utilizing the band matrix structure. Calculations are performed in single 

precision on the CDC 6400 and in double precision on the IBM 370/195. A 

special feature for analyzing the rounding error in the matrix solution 

is included in the IBM version of BEAPAC-IT. The matrix equation is 

truncated to single precision values and calculations are performed in 

single precision arithmetic. 

In most cases, the elements of v_ represent the discrete directional 

fluxes, and are denoted by ̂  = '(̂(.(̂ .̂ŷ )̂ 1=1,2,...,I, m=l,2,...,M. 

The available numerical methods for the various forms of the transport 

operator are described in Sections II and III. 

The user can also interface with BEAPAC-IT, the angular flux results 

jr̂  from existing codes for the numerical solution of the transport equa

tion by preparing the necessary interface files discussed in the users 

manual (Bareiss and Derstine 1977). 
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1.3 Error Analysis of Approximate Methods 

In Section 1.1 we developed the tools necessary for generating exact 

benchmark problems with solutions .|'g(x,y). In Section 1.2 it is outlined 

how we obtain approximate solutions ^ to these benchmark problems. 

In this section, the error 1̂ , of the approximate solution }t>^ is calcu

lated using the exact solution il>^(:x.,v) . Two pointwise error options 

are available: 

a. algebraic flux error 11% = il% " ^ 

(1.46) % - ^ 
b . r e l a t i v e f lux e r ro r i ^ = — r 

Norms a v a i l a b l e in BEAPAC-IT based on ifeg a r e : 

a. ||i|' II •' maximxmi absolu te ^ with a s soc ia t ed mesh l o c a t i o n , a l g e b r a i c 

sign and f lux va lue . 

i^Hi 
b. — ^ T — : average absolute ^ 

N = number of calculated fluxes 

The norms may be computed for a variety of domains. 

1. Global 

2. Boundary 

3. Interior 

all calculated flux nodes 

boundary and interface flux nodes 

interior flux nodes (non-boundary) 

(GLOBAL = BOUNDARY U INTERIOR) 

The corresponding scalar flux ̂ , ^ , or ̂  may be optionally tabulated 

for any desired set of spatial points. 

The objective of coarse mesh error analysis is to obtain quantita

tive error bounds on the performance of numerical approximation methods. 

Specific items of interest are boundary condition effects, spatial and 

angular mesh refinement effects and effects of materials with extreme 

properties such as strong absorption, strong scattering, or regions with 

a strong source. 
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BEAPAC-IT has built into it a special procedure for obtaining a set 

of K successive mesh refinements of D(0,a), designated D„.(0,a), 
IM 

(k = 1,2,...,K). Summaries of the error norms are tabulated for the 

benchmark problem in a manner that readily shows space angle mesh 

refinement effects. Detailed flux edits and two-dimensional plots are 

available for further analysis of the results. Particular examples are 

given in the sample problems in Sections 2.2 and 3.3. 
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II. THE STOCHASTIC TRANSPORT EQUATION 

2.1 Numerical Methods 

2.1.1 The discrete ordinates method with Hermite Birkhoff interpolation 

This method uses discrete ordinate approximations In angle and 

Hermite-Blrkhoff Interpolation in the space variable [Bareiss 1956]. It 

will be denoted by the DB-Method. In one-dimensional slab geometry 

problems, the discrete ordinates SN-Method widely used [Carlson and 

Lathrop 1968] is a special case of the DB-Method, limited to linear 

approximation in space. 

The approximation is illustrated by rewriting (1.1) for the multi-

cell problem as follows: 

(2.1) l i i i ^ = ^ [-a(x)Kx.y) + £ M £ ( 2 0 
oX li £. 

i(^(x,y')dy' + S(x,y)] 

-1 

We observe that the two point Euler Maclaurin Sum formula [Isaacson and 

Keller, 1966] yields, by letting x ^^-x^ = h^ (1=1,2,...,!) and D = J" 

(2.2) ij;(x̂ _|_̂ ,y) - i|;(x̂ ,y) = 
^1+1 

iitlx^ dx 
3x 

h.D 
-\- [i<'(x̂ +2̂ ,y) + ii;(Xĵ ,y)] 

h ^ hjD^ h^D^ 

~vi 720" "̂  30240 
*(x^_^j^,y) - ii/(x_ĵ ,y) I 

Equation (2.2) is equivalent to a two-point Hermite Birkhoff interpolation 

with subsequent integration. 

We solve (2.1) by the discrete ordinates method, hence we approxi

mate the integral by numerical integration methods including single or 

double Gauss quadrature. Therefore, (2.1) becomes a system of discrete 

first order differential equations. 
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(2.3a) T)± = M""*" [-Ol + - ^ \J]± + M"-*-̂  

where 

M = 

M 

^ = 

'l'2(x) 

*^(x) 

and 

W = 

V2-"^M 

V2---^M 

V2---^M 

S = 

S^(x) 

S2(x) 

^M(-> 

th 
o and c are assumed constant within a cell. Therefore the k 

power of (2.3a) evaluated at the endpoints of cell i (i.e., x ̂ . f. x £ 

X -) , and cell 1-1 (i.e., x. •,+ ̂  x _̂  x -) is given at x = x. by 

(2.3b) D 1 + = \±± + k,+ 
1 1 

D S = A^ A + b̂ b) 
—.- i-l""T. ~ i 
1 

where 

(2.5a) 

(2.5b) 

-1 "i^i 
A^ = M [-0^1 + ̂ y ^ W] 

1 j=0 8x-J 
X = X 

°i " <^(^i)» '̂ i = c(x_ĵ ) 
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The assumption that S (x) is constant within a mesh cell implies 

:iJc /a^J m 
that 8-̂ S/8x-' = 0 for j > 0. Thus 

(2.5c) b^';^ = M - ^ , 
1" 1 

where 1 + = Hx ^) . 
1" i" 

Substituting (2.3b) into (2.2) yields a system of linear equations for 

ij; (xj = 4;(x.,y ) (1=1,2,...,!). (m=l,2,. . . ,M) . We write this system 
m i 1 m _ _ 
r cell i as follows, letting x H x and x = x • 

1 ^-r J-̂ J- i^-i 
fo 

(2.6) Eili + H^i^^^ = g^ (1=1,2,...,1-1) 

where 

(2.7a) 

(2.7b) 

r h.A^ 

^ r24-7 fo4-

E. = -H, - h.A. 
1 1 1 1 

(2.7c) S i - — iki+i + b^ ^ - l 2 ^ ^ i + l " ^ ^ ^ 
^1 ,.(4) ,(4) 
720 ^^+1 " ̂ i ^ 

= h^M-^S^ 

The last two terms of (2.7c) are zero, since we assume a piecewise con
stant source S (x) for x. < x < x.,,. Combining the equations (2.6) anc 

m 1 — — i+l 
(2.7) with the boundary conditions into matrix form we obtain 

(2.8) 

B, 

^ 1 ^ 

^2»2 

^I-l "l-l 

2 J L ̂ i J 

^2 

ir 

^1 

^2 

%-l 

Li2. 
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The matrices E and H^ have exactly the same configuration inde

pendent of the order of approximation (i.e. power in A ). B and B 
M 1 2 

are the -r- x M boundary condition matrices defined by 

(2.9) ^1 = 

a e 

3 a 
3 a 

where 

(2.10) (a,3) = 
1(1,0) for incident flux boundary condition 

1(1,-1) for reflecting flux boundary condition. 

M f- and jf are inhomogeneous boundary source vectors of dimension -r- defined 

by 

y > 0 incident 
m (2.11a) f (y ) = J ̂  "̂  

(_'l'3(0,yj - ^-^(0,-^) ŷi > 0 reflected 

(2.11b) f„(y ) = 
2 m 

[>B(a,yJ y < 0 incident m 

4) (a,y ) - ij; (a,-y ) y„ < 0 reflected 
'Dm a m m 

First, third or fifth order approximations are obtained by truncat

ing (2.7a) after the second, third or fourth terms, respectively. Then 

(2.6) becomes 

(2.12) K<«±, ^ «<•'V, = ^ (i=l,2,...,I), (k=l,3,5) 

where the superscript k denotes the order of approximation. 
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Block tridiagonal Gaussian elimination is employed by partitioning 

the subblocks in (2.8) such that the following structure is obtained. 

(2.13) 

^2 2̂ S 

S 3̂ S 

A D 
*I I 

M A. and C have dimension M x — and B, has dimension M x M. 
1 1 2 1 M M 
dition submatrices D C , A and D have dimension Y ^ T' 
are stored in a rectangular array with dimension IM x 2M. 

Boundary con-

The matrices 

2.1.2 The discrete ordinates method with Galerkin Finite Element 
method in space 

The approximation method discussed is a discrete ordinates method 

in the directional variable y with a Galerkin Finite Element approxima

tion in the spatial variable x. We denote this method by the DGF method. 

Let 

(2.14) L4)(x,v) = S(x,y) 
0 £ X £ a 

-1 < y < 1 

represent Eq. (1.1). 'jj(x,y) is expanded in a set of piecewise linear 

Chapeau functions {0.(x)} as follows: 

(2.15) ,(,(x,y) = I b.(y)0,(x) 
1=1 ^ 

0 < x < a 

where {G^(x)} is defined as in (1.25). The DGF method finds solutions 

t(x,y) which satisfy the weak (Galerkin) form of (2.14) [Strang and Fix, 

1973] given by 

(2.16) <G^(x), Li|;(x,y)> = <9^(x), S(x,y)> (1 = 1,2,...,1) 
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where 
fX 

<•> = 
i+l 

dx . 

^1-1 

Application of the discrete ordinates approximation to (2.16) leads 

to a set of IM equations 

fi = 1.2 l-\ 
(2.17) <G^(x), Li|;(x,yJ> = <G^(x), S(x,y^)> V = 1,2,...,M̂  

which upon substitution of (2.15) becomes 

(2.18) <9.(x). (y^|-+a(x)) Ib^9^(x) -
k=l 

q(x)c(x) M 

2 I /m' J,^km'V-)> 
m =1 k=l 

= <9 (x), S(x,y )> . 
1 m 

The discrete ordinates approximation is derived by evaluating the 

angular flux distribution in a number of discrete directions; hence the 

scattering integral in the 1 equation is approximated by 

1 M 
dyb.(y) ~ y w b. 

1 ^T m im 
, m=l 

The numerical integration is usually double Gauss quadrature. 

It is easily shown that 

im 1 m 1 m 

since 9.(x.) = 1, 9.(x.) = 0 for i ?̂  j 
1 1 J 1 

The matrix representation of (2.18) becomes 

(2.19) Kl = ̂  

Here 
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(2.20a) K = 

'̂ ll ^12 

^21 ^22 ^̂ 23 

1̂-1,1-2 ̂ -1,1-1 I-l.I 

K I.I-l K. II 

. ^ = 

± 
-(x̂ ) 

(xj 

L̂ (-l)-

£. 

^2 

(x) 

(x) 

£T(^> 

and 

(2.20b, K,, . .<»M . C"-i-l(' - ̂  ") ^ <T:''fi - T ") 

where I is the identity matrix. M = diag(y^) (m = 1,2 M) and 

W = 

^1 ^2 ••• ̂ M 

w w 
^1 2 

"l ^2 

w. M 

w. M 

except for 1=1, where the first M/2 rows in K .. and K are the 

(M/2 xM) matrices B.... and B respectively, and for i=I, where the last 

M/2 rows in K and K are the (M/2 xM) matrices B„, and B„„ as 
•'•>•'•"•'- /•Q\+-'-> J- 21 22 

defined below. The k./~ are defined so that 
ik 

<e,«,e,W>..<»)-..<0H 

where 

(2.21a) k 

and 

(0)- ^ 
ik ^ 9̂ (x)Gĵ (x)dx = —y-^ 

^ - 1 

1 l<i=k^I 
% i=k-l 
0 otherwise 

(2.21b) k (0)+ ̂  
ik 

Ax. 
•̂•"̂  9^(x)9k(x)dx = ^ 

1 l£i=k<I 
h l=k+l 
0 otherwise 



43 

The kj, are defined so that 
ik 

(2.21c) k^^^ = <e^(x), 0̂ (x)> = 

[ 0 o 

0 l<i=k<I 
1 i=k-l or i=k=I 

=k+l or i=k=l 
therwise 

Boundary conditions Bi|j(x,y) = f(x,y) at x=0, y>0 and x=l, y<0 are 

incorporated into the matrix K in (2.20a) by defining the first M/2 

rows of K , and K by B .. and B and the last M/2 rows of K and 

^11 ̂ y ^21 ̂ "'̂  ^ 2 -

B̂  ̂  and B „ are the left side (x=0) boundary condition matrices 

and B - and B „ are the right side (x=a) boundary condition matrices 

defined for incident or reflected flux boundary conditions so that 

(2.22a) B 
11 

(2.22b) B 
22 

1 3 

3 1 

. B^2=0 

_ rO incident flux 
U reflected flux 

. B^, = 0 

^ (x,) is defined so that 

(2.23a) ± (x^) = [iĵ (x̂ ,ŷ ), ijj(x̂ ,y2) .. .. ,'l'(x̂ ,yĵ )] 

and £ j ( x ) = (g . ) i s defined so t h a t 

Ax S (y ) 
1 1 m 

(2.23b) g^^ = <0^(x) , S ( x , y J > = Jg • <AX^_^S^_^(y^) + Ax^S^(yJ 

AXjS^(yJ 

except that the corresponding Inhomogeneous boundary condition terms 
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fi(y ) and f,(y ) replace g, , m = l,...,M/2 and g^ , m = M/2 + 1,•••'^ 
1 m 2 m Im Im 

respectively. f̂  (y ) and f^(y ) are defined so that for y ;• 0 
1 m 2 m' 

\i> (0,y) incident flux 
(2.24a) f.(y) = J ^ (l̂  ̂  0> 

l'/'3(0,y) - 'l'g(O.-y) reflected flux 

and for y < 0, 

i\p (a,\i) incident flux 
(2.24b) f2(y) = < (y < 0) 

[i/; (a,y) - \ĵ g(a,-y) reflected flux 

K is a block tridiagonal matrix which is stored in a rectangular 

array of dimensions IM x 3M. The system of equations (2.19) is solved 

by block Gauss elimination. 
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2.2 Examples of the Benchmark Problem Error Analysis Procedures 

Four monoenergetic slab benchmark problems with isotropic scatter

ing (denoted by BPl, BP2, BP3 and BP4) are presented which illustrate 

several types of investigations which may be performed using BEAPAC-IT. 

BPl and BP2 are one-cell benchmark problems with angular flux solu

tions \|;„(x,y) given by an asjnnptotic and transient Case eigenmode 
D 

respectively. BP3 and BP4 are benchmark problems whose solutions are 

linear combinations of asymptotic and transient Case eigenmodes. The 

latter two problems illustrate the automatic procedure (section 1.1.4) 

for obtaining the eigenmode combining coefficients. This procedure 

employs the Householder least squares solution of an overdetermined 

system of equations and is shown to be a prototype of a new numerical 

solution method. 

2.2.1 Benchmark Problem #1, an asjnnptotic eigenmode 

BPl is defined in the unit cell 0 _< x £ 1 with angular direction 

cosines |y| ^ 1 . The cell composition is defined by the total cross 

section CJ = 1, the asyraptotic eigenvalue v = 1.05 (i.e. c = .5129 by 

Eq. (1.6)) and Isotropic source S = 0. The benchmark solution I|J (x,y) 
-I- ^ 

is defined from Eq. (1.4b) with a_ = 1 and all other combining coeffi

cients zero. Incident flux boundary conditions are defined by I(J (x,y) 

evaluated at the boundaries. Figures 2.1a,b,c illustrate respectively 

the scalar flux <̂ _(x) and the angular flux traverses of ijj (x,y) along 
B D 

X for y fixed and along y for x fixed. 

The numerical methods denoted by DBl, DB3 and DGF corresponding to 

the first (SN-Method) and third order discrete ordinate Hermite Birkhoff 

method and the discrete ordinate Galerkin finite element method 

respectively are applied to BPl for successive sets of space/angle 

mesh discretization. Five spatial refinements h = l/l (1=1,2,4,8,16) 

and four double Gauss (DP ,„, N=2,4,8,16) quadrature sets define twenty 

problems. 

The numerical results for the twenty discretized problems are tabu

lated in Tables 2.1, 2.2, 2.3 and 2.4. Each table contains three 
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BENCHnflRK 1 SCALAR FLUX PHIB(X) 

(a) 

» 0 0.1 0*3 B** 0>f ff-f fr7 ••• o>e (•• 

a-PHIBM) 

BENCHMARK 1 ANGULAR FLUX TRAVERSES PS IB IX,MU) 

(b) 

•• n n 0-1 ••« >•( o-i g.? »a ••• t-» 

* 
o-psieix.i) 
• -PSIBO.OI 

»-reieix.-i) 

BENCHMARK 1 ANGULAR FLUX TRAVERSES PSIB(X,MU) 

(c) 

. t ' i .«•• 

LCB3JBL 
• -fsiBio.nui 
o-fSIB(.5,nui 
*-Psi8(i,nui 

Figure 2.1. Flux Distributions for Benchmark //I 
(a) Scalar flux K(x) 
(b) Angular flux traverse t;,B(x,y) along x for fixed u 
(c) Angular flux traverse t(;B(x,y) along y for fixed x 
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Table 2.1. Maximum absolute signed scalar flux error ±|(fi || 
tabulated for twenty space/angle discretization" 
sets of Benchmark #1 for the DBl, DB3 and DGF methods 

BttPlC 0V76 BPI1.1 tSUIlPIOTIC SOIOTIOK »0»-1 , BUO-1.05,1: (0,1) ,bC (1,1) , S-O 

l l t l , BBS, SCtltD PLUI EBBOB kNO lOClTIOB (GlOBtL) 

(a) DBl 

It BC. or XHESH IMTEBVILS 

IBBOB 
tIBCI 
I LOC 

IBBOB 
II ACT 
I toe 

IBtCB 
IIACT 
Z lOC 

ZBBCB 
tZACI 
I LOC 

ZBBOB 
ZXICT 
X LOC 

J: HO. or nu POIBTS 

I 

1 

2 

« 

a 

16 

2 

< . 1 « D - 0 1 
1.000 
0 . 0 

« . 1 3 0 - 0 1 
1.000 
0 . 0 

a . 1 2 0 - 0 1 
1.000 
0 , 0 

1 . 1 2 0 - 0 1 
1.000 
0 . 0 

1 .12D-01 
1.000 
0 . 0 

« 

1 . 6 2 0 - 0 1 
1 .000 
0 . 0 

1 . 7 9 0 - 0 1 
l.OOO 
0 . 0 

1 . 7 9 0 - 0 1 
1 .000 
0 . 0 

1 . 7 9 0 - 0 1 
1 .000 
0 . 0 

1 . 7 9 0 - 0 1 . 
1 .000 
0 . 0 

e 

« . 1 2 0 - 0 2 
0 .386 
1.000 

3 .28D-02 
1.000 
0 . 0 

3 . 3 2 0 - 0 2 
1.000 
0 . 0 

3 . 3 3 0 - 0 2 
1.000 

^ 0 . 0 

3 . 3 3 0 - 0 2 
1.000 
0 . 0 

16 

2 . 5 0 0 - 0 2 
0 . 3 8 6 
1.000 

6 . 1 7 0 - 0 3 
0 . 6 2 1 
0 . 5 0 0 

J . 120-03 
0,1190 
0 . 7 5 0 

1 .190 -03 
0 . 7 0 0 
0 .375 

1 .050 -03 
0.9112 
0 .063 

IZIPAC 05/76 BPItZlSIBPIOTIC SOLOTIOB A 0 « - 1 , B 0 0 - 1 . 0 S , Z : (0,1) , B C ( I , I ) , S * O 

•AX. ASS. SCALAB ZLOX ZBBOB AID LOCATIOB (GLOBAL) 

(b) DE3 

I : 1 0 . 

IBBOB 
I I A C T 
I LOC 

ZBBOB 
I I A C T 
I LOC 

ZBBOB 
I I A C T 
I LOC 

ZBBCB 
I I A C T 
I LOC 

ZBBOB 
I IACT 
X LOC 

or 

a 
I 

1 

2 

a 

16 

I IAPAC 0 5 / 7 6 

[BESU IBTEBVALS J : 1 0 . 

. 

.• 

• 

• 

• 

2 

« . 1 2 0 - 0 1 
1.000 
0 .0 

"1.12U-01 
1.000 
0 . 0 

4 . 1 2 0 - 0 1 
1.000 
0 . 0 

« . 1 2 0 - 0 1 
1.000 
0 .0 

4 . 1 2 0 - 0 1 
1.000 
0 . 0 

BPB1.1 ASH 

« 

1 . 7 8 0 - 0 1 
1 .000 
0 . 0 

1 . 7 9 0 - 0 1 
1 .000 
0 . 0 

1 . 7 9 0 - 0 1 
1 .000 
0 . 0 

1 . 7 9 0 - 0 1 
1 .000 • 
0 . 0 

1 . 7 9 0 - 0 1 
1 .000 
0 . 0 

o r BO POIBTS 

8 

3 . 3 0 D - 0 2 
1,000 
0 . 0 

3 . 3 3 0 - 0 2 
1.000 
0 . 0 

3 . 3 3 0 - 0 2 
1.000 
0 . 0 

3 . 3 3 0 - 0 2 
1 .000 
0 . 0 

3 . 3 3 0 - 0 2 
1 .000 
0 . 0 

FTOTIC SOIOTIOH A O . ' l , 

16 

1 .050 -03 
1.000 
0 . 0 

1 .030 -03 
1.000 
0 . 0 . 

1 .030 -03 
1.000 
0 . 0 

1 .030 -03 
1.000 
0 . 0 

1 .030 -03 
1.000 
0 . 0 

H 0 0 - i . 0 5 , i : ( 

•AI. ABS. SCALAB PLOI EBBOB ABO LOCAIIOB (GLODAL) 

It BO. or I!IESH lUTEBfALS 

J '. 3 

. J: 10. or !iu poiHTS 

« a 

(c) DGF 

IBBOB 
I I A C T 
X LOC 

IBBOB 
I I A C T 
I LOC 

IBBOB 
I I A C T 
X LOC 

IBBOB 
I I A C T 
X LOC 

I IBOB 
ZIACT 
Z LOC 

1 

2 

• 

a 

16 

. 3 . 9 7 0 - 0 1 

. 1.000 

. 0 . 0 

. « . 1 0 0 - 0 1 

. 1.000 

. 0 . 0 

. • . 1 2 0 - 0 1 

. 1.000 
, 0 . 0 

. « . 1 2 0 - 0 1 
. 1.000 
. 0 . 0 

. « . 1 2 0 - 0 1 

. 1.000 

. 0 . 0 

1 , 6 6 0 - 0 1 
1 ,000 
0 . 0 

1 , 7 7 0 - 0 1 
1,000 
0 , 0 

1 . 7 8 0 - 0 1 
1.000 
0 . 0 

1 . 7 8 0 - 0 1 
1 .000 
0 , 0 

1 , 7 9 0 - 0 1 
1 .000 
0 . 0 

2 . 0 1 D - 0 2 . 
1 ,000 ; 
0 . 0 

3 , 7 7 0 - 0 2 
0 . 6 2 1 

- 0 , 5 0 0 

3 . 3 7 0 - 0 2 
0 . 7 8 8 
0 . 2 5 0 

1 . 3 3 0 - 0 2 
0 . 8 6 8 
0 . 1 2 5 ^ 

3.3110-02 
0.9<I2 
0,06.1 

- 2 , 5 6 0 - 0 2 
0 .386 
l.OOO 

1.2eD-u<' 
0 . 6 2 1 
0 , 5 0 0 

11,160-03 
0 , 7 8 6 
0 , 2 5 0 

1 ,850 -03 
0 . 6 8 8 
0 . 1 2 5 

1 .250 -03 
0.9112 
0 . 0 6 3 
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subtables (a,b,c) corresponding to the three methods listed above, 

entries to Tables 2.1a,b,c have the three following items for each o 

the twenty problems: 

(1) ERROR: the maximum absolute pointwise scalar flux error 

IIA II with associated algebraic sign 

(2) EXACT: the exact scalar flux solution <t'B(x) at the ERROR 

location 

(3) X LOC: the mesh point coordinate of the ERROR 

Reading the rows of the table from left to right corresponds to an increas

ing number of angular mesh refinements (J=2,4,8,16) for a fixed spatial 

mesh I. Reading the columns of the table from top to bottom corresponds 

to an increasing number of spatial mesh refinements (1=1,2,4,8,16) for a 

fixed angular discretization J. For example, the entry in Table 2.1a 

for 8 angles and 4 spatial mesh intervals has the maximum absolute 

scalar flux ERROR 3.32D-02 associated with the EXACT scalar flux of 1.000 

at X LOC x=0 in the cell. 

Within a given row or column of 2.1a the error for DBl converges, 

but not to zero, as the corresponding refinement increases. Dn each 

table of 2.1, the spatial mesh convergence is indicated by connected line 

segments. Mesh refinements chosen below this line are clearly not 

warranted. 

The results in Table 2.1a and 2.1b clearly illustrate the faster 

spatial convergence of the DB3 method compared to the DBl method. The 

spatial error convergence for the DGF method. Table 2.1c, is slower than 

the DBl method. In this problem where the scattering and absorption are 

nearly equal we see that the asymptotic solution in Fig. 2.1c has an 

extremely high gradient with respect to y near y = 1. This means a large 

number of angular points will be required to obtain an accurate scalar 

flux. Notice that with eight double Gauss angles the error in the 

scalar flux is about 3% for a mesh discretization of .5 mean free paths; 

for 4 angles the error is at least 18%. Figures 2.2a,b,c display the 

pointwise scalar flux error A for the three solution methods under 
-HE 

consideration for eight of the twenty problems. The problems displayed 
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BENCHMARK 1,1 SCflLflR FLUX ERROR PHIE(X) FOR 1-8 OR M-8 

(a) DBl 

BENOIMflRK 1.2 SCflLflR FLUX ERROR PHIECXJ FOR 1-8 OR M-8 

(b) DB3 

BENCHMARK 1.̂  SCALAR FLUX ERROR PHIE(X) FOR 1-8 OR M-8 

(c) DGF 

Figure 2.2. Scalar flux error ̂  for DBl, DB3 and DGF methods 
for eight selected discretizations of Benchmark #1 
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correspond to the four problems with spatial mesh 1 = 8 and the five pro 

lems with angular mesh M = 8 (i.e. column 3 and row 4 in Tables 2.1a,b,c;. 

The most significant error reductions occur as the number of angles are 

increased. For the fixed quadrature set of eight angles the scalar flux 

error shows negligible improvement with increased niomber of mesh cells. 

It is evident from these results that the angular approximation is 

the major factor in the error performance and that high order spatial 

methods are of secondary interest. 

The angular flux error performance is also available and Tables 

2.2a,b,c tabulate the maximum absolute pointwise angular flux error 

II ij; ] with algebraic sign. 

Tables 2.2a,b,c are organized similar to Tables 2.1a,b,c with one 

additional entry: 

MULOC: the angular coordinate of the maximum flux error 

The angular flux error tables Illustrate the same general error conver

gence patterns as in the scalar flux case. The error is not weighted in 

this case, therefore the angular location must be considered when applying 

the error contribution to the scalar flux. Figures 2.3a,b,c, 2,4a,b,c 

and 2.5a,b.c illustrate the angular flux error traverse along the y axis 

for three fixed x values (0.,.5,1.). Each figure has three subplots 

corresponding to the three methods under consideration. The same subset 

of eight problems is chosen for illustration as in Fig. 2.2. The quali

tative error behaviour is similar to that observed when studying the 

scalar flux error; the angular approximation is critical. Note that at 

the cell boundaries the error for the incident fltix is zero since inci

dent flux boundary conditions are employed. 

Tables 2.3a,b,c and 2.4a,b,c are two additional tables available to 

study the average pointwise scalar flux error and the relative sum error 

of the pointwise flux errors for the (global and boundary) domain for the 

twenty discretization sets. For the three methods the average flux error 

converges to equivalent limits, but the convergence is more rapid for DB3. 

The relative sum error illustrates the superior accuracy of DB3 to 

DBl or DB4. 
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Table 2.2. Maximum absolute signed angular flux error ±|llglL 
tabulated for twenty space/angle discretization 
sets of Benchmark #1 for the DBl, DB3 and DGF methods 

BCIPtC 05/76 DPIl.t iSinPTOTIC SOLOTIOM kO *• t,IUO* 1 .OS,Z I (0« 1) , BC(X,I) «S-0 

HIX. ABS. TCCTOn FLUX ZHflOB AND LOCiTIOH (GLOFtL) 

It 10. o r inesH iHTzBViLS 

J i 2 

J t 1 0 . o r BO POINTS 

(a) DBl 

VRBOI 

ntcT 
X LCC 
• PLOC 

c t m o R 
XXICT 
X IOC 

nuioc 
XBROR 
EXACT 
X LOC 
BDLOC 

XBBOIt 
EXACT 
X LOC 
BDLOC 

rRROB 
ZXACT 
X IOC 
auLOc 

1 

2 

« 

8 

16 

BBiPAC 0 5 / 7 6 

9 . 2 4 0 - 0 2 
0 . 1 8 9 
1 .000 
0 . 5 0 0 

7.61D-02 

7 . 5 8 3 - 0 2 
0 .17M 
0 . 0 

- 0 . 5 0 0 

7.57D-C2 
0.17« 
0 .0 

• 0 . 5 0 0 

5 . 8 3 0 - 0 2 
0 .398 
1.000 
0 .709 

4.C6D-02 
0. 199 
0. SOO 
0.211 

4 . 2 0 D - 0 2 
0 . 2 1 3 
0 . 0 

- 0 . 2 1 1 

1 1 . 1 9 0 - 0 2 
0 . 213 
0 . 0 

- 0 . 2 1 1 

7 . 3 R D - 0 2 
0 . 8 7 0 
1 . 0 0 0 
0 . 9 3 1 

2 . 0 1 0 - 0 2 
0 . 6 7 0 
1 . 0 0 0 
0 . 9 3 1 

1 . 0 8 0 - 0 3 
0 . 2 1 6 
0 . 2 5 0 
0 . 0 6 9 

B.4 30-03 
0.211 
0 . 0 

- 0 . 0 6 9 

. 7 . 5 7 D - 0 2 

. 0 . 1 7 4 

. 0 . 0 

. - 0 . 5 0 0 

1 . 1 9 0 - 0 2 
0 . 2 1 3 
0 . 0 

- 0 . 2 1 1 

8 . 0 3 0 - 0 3 
0 . 2 4 1 
0 . 0 

- 0 . 0 6 9 

1 , 1 « D - 0 1 
1 .087 
1 .000 
0 .9Pa 

2.750-02 
1.4K7 

i.oca 
0 . 9 1 0 

6.6?0-03 
1.467 
1.000 
0.9C0 

1 . 7 9 3 - 0 3 
1 .487 
1 . 0 0 3 
0 . 9 8 0 

5.373-04 
1 .487 
1.CC0 
0 . 9 0 0 

s p i i , 3 i s i a r r o i i c SOLOTIOI A O * > I , B D O - I . 0 5 . Z : ( 0 , 1 | , B C ( Z , I > , S - O 

(b) DB3 

BBX. IBS. TECTOB riOX ERBOK AID LOCiTIOl (6L0BAL) 

It BO. or XHESB IHTEBfALS J: 10. or BO POIBTS 

J ! 2 4 B 

X . 

FRIOR 
EXACT 
X LOC 
BDLOC 

IBBOB 
EXACT 
X LOC 
BO LOC 

BRBOK 
EXACT 
I LOC 
BQLOC 

ERBOI 
EXACT 
X LCC 
BOLOC 

ZRBOI 
BX,\CT 
I LOC 
•O lOC 

1 

2 

4 

B 

1 6 

. 7 . 5 7 0 - 0 2 

. 0 . 1 7 4 

. 0 . 0 

. - 0 . 5 0 0 

. 7 . 5 7 D - 0 2 

. 0 . 1 7 4 

. 0 . 0 

. - 0 . 5 0 0 

\ 7 . 5 7 0 - 0 2 
. 0 . 1 7 4 
. 0 . 0 
. - 0 . 5 0 0 

'. 7 . 5 7 D - 0 2 
. 0 . 1 7 4 
. 0 . 0 
. - 0 . 5 0 0 

'. 7 . 5 7 0 - 0 2 
. 0 . 1 7 4 
. 0 . 0 
. - o . s o o 

4 . 0 8 0 - 0 2 
0 . 2 1 3 
0 . 0 

- 0 . 2 1 1 

4 . 1 8 0 - 0 2 
0 . 2 1 3 
0 . 0 

- 0 . 2 1 1 

4 . 1 9 0 - 0 2 
0 . 2 1 3 
0 . 0 

- 0 . 2 1 1 

4 . 1 9 D - 0 2 
0 . 2 1 3 
0 . 0 

- 0 . 2 1 1 

4 . 1 9 0 - 0 2 
0 . 2 1 3 
0 . 0 

• 0 . 2 1 1 

7 . 1 5 0 - 0 3 
0 . 1 9 5 
0 . 0 

- 0 . 3 3 0 

8 . 3 1 0 - 0 3 
0 . 2 4 1 
o . r 

• 0 . 0 6 9 

8 . 4 3 0 - 0 3 
0 . 2 4 1 
0 . 0 

- 0 . 0 6 9 

8 . 4 3 0 - 0 3 
0 . 2 4 1 
0 . 0 

• 0 . 0 6 9 

8 . 4 3 D - 0 3 
0 . 2 4 1 
0 . 0 

- 0 . 0 6 9 

- 1 , 5 9 0 - 0 3 
1 . 4 8 7 
1 . 0 0 0 
0 . 9 8 0 

2 . 5 8 0 - 0 4 
0 . 2 3 4 
0 . 0 

• 0 . 1 0 3 

2 . 6 3 0 - 0 4 
0 . 2 5 2 
0 . 0 

- 0 . 0 2 0 

2 . 6 5 0 - 0 4 
0 . 2 5 2 
0 . 0 

- 0 . 0 2 0 

2 . 6 5 0 - 0 4 
0 . 2 5 2 
0 . 0 

- 0 . 0 2 0 

iXABAC 0 5 / 7 6 B P I L 4 ASTBPTOTIC SOLUTIOB A 0 4 - 1 . B 0 0 - 1 . 0 5 . X t ( 0 , 1 ) , B C < I , X ) , S - 0 

BAX. A B S . VECTOB fLOX EBBOB ABO LOCATIOB (GLOBAL) 

(c ) DGF 

I t BO. 

BR FOB 
EXACT 
X I.OC 
RDLOC 

E9R0B 
BXACT 
2 IOC 
BOLOC 

EBBOB 
BXACT 
X LOC 
BOLOC 

BRBOB 
IXACT 
1 LOC 
BOLOC 

ElBOR 
BXACT 
X I O C 
I B LOC 

o r 

J 
X 

1 

3 

« 

e 

1 6 

IftXSH XBTERVALS 

2 

.' 6 . 0 2 9 - 0 2 
0 . 1 7 4 

. 0 . 0 

. - 0 . 5 0 0 

. 7 . 3 3 P - 0 a 

. 0 . 1 7 4 

. 0 . 0 

. -O.SOO 

. 7 . 5 1 0 - 0 2 

. 0 . 1 7 0 

. 0 . 0 

. - 0 . 5 0 0 

. 7 . 5 5 0 - 0 2 

. 0 . 1 7 4 

. 0 . 0 

. - 0 . 5 0 0 

, , 7 , 5 7 0 - 0 2 
. 0 . ' I 7 4 
. 0 . 0 
. - 0 . 5 0 0 

J l BO. 

4 

3 . 0 9 0 - 0 2 
0 . 213 
0 . 0 

- 0 . 2 1 1 

4 . 0 3 D - 0 2 
0 . 199 
C . 5 0 0 
0 . 2 1 1 

4 . 1 0 0 - 0 2 
0 . 2 1 3 
0 . 0 

- 0 . 2 1 1 

4 . 1 6 0 - 0 2 
0 . 2 1 1 
0 . 0 

- 0 . 2 1 1 

4 . 1 8 0 - 0 2 
0 . 2 1 3 
0 . 0 

- 0 . 2 1 1 

OP ao r o i B T 

8 

- 6 . 7 9 0 - 0 2 
0 . 8 7 0 
1 . 0 0 0 
0 . 9 3 1 

2 . 4 3 0 - 0 2 
1 . 4 0 0 
0 . 5 0 0 
0 . 9 3 1 

9 . 2 6 D - 0 3 
0 . 2 1 6 
0 . 2 S 0 
0 . 0 6 9 

8 . 3 4 0 - 0 3 
0 . 2 1 4 
0 . 1 2 5 

- 0 . 0 6 9 

i . 3 7 D - C l 
0 . 2 4 1 
0 . 0 

- 0 . 0 6 9 

S 

16 

- 1 . 2 2 0 - 0 1 
1 . 497 
1 . 0 0 0 
0 . 9 8 0 

3 . 5 9 0 - 9 2 
2 . 3 9 4 
0 . 5 0 0 
0 . 9 8 0 

9 . 6 1 0 - 0 3 
3 . 0 3 8 
0 . 3 5 0 
0 . 9 B 0 

2 . 5 1 D - 0 3 
3 . 4 2 2 
0 . 1 2 5 
0 . 9 8 0 

6 . 8 6 0 - 0 4 
1 . 5 7 9 
0 . 9 3 B 
0 . 9 S 0 
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BENCHMARK LI ERROR TRAVERSES PSIE(0,MU) FOR 1-8 0R_M-8 

(a) DBl 

BENCHMARK L2 ERROR TRAVERSES PSIE(0,MU) FOR 1-8 OR M-8 
S 

(b) DB3 

BENCHMARK 1.4 ERROR TRAVERSES PSIE(0,MU) FOR 1-8 OR M-8 

(c) DGF 

Figure 2.3. Angular flux error traverses i|ig(0,u) for DBl, DB3, and DGF 

methods for eight selected discretizations of Benchmark fl 



53 

BENCHMARK U ERROR TRAVERSES PSIE(.5,MU) FOR 1-8 OR M-8 

(a) DBl 

-i.o •<).• 

BENCHMARK L2 ERROR TRAVERSES PSIEL5,MU) FOR 1-8 OR M-8 

o-PSIEt.S,nU) 8,2 
o-PSIEl.S,nU) 8,* 
4-PSIEl.5,nUl 2,8 
• -PSIE(.S,nU) 4,8 
x-PSIE(.5,rtU) 8,8 
• -PSIE(.5,nU)16,8 
»-PSIE(.S,HU)8,16 

(b) DB3 

1-0 

BENCHMARK 1.4 ERROR TRAVERSES PSIE(.5,MU1 FOR 1-8 OR M-8 

(c) DGF 

Figure 2.4. Angular flux error traverses i(;g(.5,y) for DBl, DB3, and DGF 

methods for eight selected discretization sets of Benchmark #1 
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BENCHMARK 1,1 ERROR TRAVERSES PSIE(1>MU) FOR 1-8 OR M-8 

0-PSIE(l,t1U) 8,2 
o-psiEn,MU) e,i 
*-psiEn,nu) 
• -psiEii.nu) 
»-PSIE(I,ftU) 
• -psiEii,nu) 
»-PSIE(l,nU)16, 
• -psiEd.nu) " 

(a) DBl 

BENCHMARK L2 ERROR TRAVERSES PSIE(1,MU) FOR 1-8 OR M-8 

o-PSIEII ,f1Ul 
o-psiE( i ,nu i 
* -PsiE( i ,nu) 
• -PsiE(i,nu) 
x-PslEa,nu) 
• -ps iE( i ,nui 
»-PSIEtl,HU)16, 
• -PSlE(i,nu) " 

(b) DB3 

BENCHMARK 1.4 ERROR TRAVERSES PSIECl^MU) FOR 1-8 OR M-8 

0-PSIE( l ,nU) 8, 
o -PSIE( l ,nUI 8, 
* - P S i E ( i , n u ) 1, 
• -PSIE(l ,nU) 2, 
x -PSIE( l ,nU) 4, 
• -PSIEI l ,nUl 8, 
«-PsiEa,nu) i6 , 
• -PSIEtl,nU) 8, 

(c) DGF 

Figure 2.5. Angular flux error traverse '̂j,(l,y) for DBl, DB3 and DGF 

methods for eight selected discretization sets of Benchmark #1 
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Table 2 . 3 . Average abso lu te s c a l a r f lux e r r o r for DBl, 
DB3, and DGF methods for twenty d i s c r e t i z a 
t i o n s e t s of Benchmark //l 

• r i l . l i s i n P T O T t c .lOLOTtoii i O * . l , « a o * t , o s , i t < 0 . 1 1 , i c ( l . i ) , 1 . 0 

ATS. I I S . S C I L I I TLIIJI ERROI ( G L O I i l ) 

(a) DBl 

Xl RO. 

EBBOB 

TBBOB 

BBBOB 

EBSOt 

EBBOB 

OP 

Z 

1 

2 

4 

8 

16 

I f l lSH iBTSRVtLS 

2 

I 3 . 1 9 & - 0 1 

. 3 . 0 9 0 - 0 1 

. 3 . 07D-01 

. 3 . 0 6 0 - 0 1 

. 3 . 0 6 0 - 0 1 

Jt >0. 

4 

1 . 4 6 D - 0 I 

1 .30D-01 

1 . 3 6 0 - 0 1 

1 . 3 5 0 - 0 1 

1.35D-Q1 

or BO roiBts 

fl 

3 - 7 » 0 - e i 

3 . 8 5 0 - 0 3 

2 .60D-03 

2 . 5 1 0 - 3 3 

a .S3D-03 

16 

1 .300-03 

4 . 1 3 D - 0 ] 

1 .750 -03 

1 .030 -43 

'8 .460-04 

AT«. ABS. SCALAR PLOI ISBOR (BOOMDABI) 

Xt 1 0 . o r tnXSH TITXBfALS 

*J ', 2 
X . 

J : 10. o r BO POIBTS 

UBOB 

EBBOB 

EBBOB 

BBBOB 

BltOB 

1 

7 . 

4 

B 

16 

3 . 1 9 0 - 0 1 

3 .0SD-01 

3 . 0 3 0 - 0 1 

3 . 0 1 0 - 0 1 

3 . 0 1 0 - 0 1 

1 .48D-01 

1 . 3 3 0 - 0 1 

1 . 3 0 0 - 0 1 

1 . 3 0 0 - 0 1 

1 .30D-01 

3 . 7 6 0 - 0 3 

2 . 6 3 0 - 0 2 

2 . 4 8 0 - 0 2 

3 .43D-03 

2 . 4 2 0 - 0 2 

1 .300 -03 

3 . 0 0 0 - 0 3 

1 .00D-03 

9 .13D-04 

7.B9D-04 

BRARAC 05/76 B P t U ASTBPTOTIC SOLOTIOI A 0 4 - 1 , 1 0 0 - 1 . O S , X l ( 0 , 1 | . B C ( X , I | , S * 0 

A I 6 . ABS. SCALAB PLDX EBBOB (CLOBAL) 

Xt BO. o r XBBSI XBTBBTALS J : BO. OP 10 P O I R S 

(b) DB3 

EBBOB 

EBBOB 

E l BOB 

BBBOB 

EBBOt 

1 '. 

7 . 

4 

8 

16 

3 . 0 1 0 - 0 1 

3 . 0 4 0 - 0 1 

3 .0SD-01 

3 .06D-01 

, 3 .060-OT 

1 . 2 9 0 - 0 1 

1 . 3 2 0 - 0 1 

1 . 3 4 0 - 0 1 

1 .3SD-01 

1 . 3 5 0 - 0 1 

3 .3SO-02 

a . 0 4 0 - 0 2 

2 . 0 9 0 - 0 2 

2 . 5 1 C - 0 2 

3 . 5 2 0 - 0 2 

5 . 6 9 0 - 0 4 

7 . 0 1 0 - 0 0 

7 .69D-00 

7 . 7 8 0 - 0 4 

7 .B10-04 

ATB. ABS. SCALAB f t D Z ERAOB (BODBDABI) 

Xt RO. 0 ( X4BSB XltBITALS J : a o . OF BO POIBTS 

BRROB 

BBBOR 

BBROB 

BBROa 

IBBOB 

1 ' 

2 . 

4 

8 . 

16 , 

', 3 . 0 1 0 - 0 1 

3 . 0 1 0 - 0 1 

, 3 . 0 1 0 - 0 1 

. 3 . 01O-01 

. 3 . 0 1 0 - 0 1 

1 . 2 8 0 - 0 1 

1 . 2 9 0 - 0 1 

1 . 3 0 » - 0 1 

1 . 3 0 9 - 0 1 

1 . 3 0 0 - 0 1 

3 . 3 5 0 - 0 2 

2 . 4 1 0 - 0 3 

2 . 4 1 0 - 0 3 

' 3 . 4 1 0 - 0 2 

3 . 4 1 0 - 0 3 

5 . 6 9 0 - 0 0 

7 . 3 5 0 - 0 4 

7 . 4 8 0 - 0 4 

7 . 4 8 0 - 0 4 

7 .48B-04 

8BAPAC 0 5 / 7 6 B P I t l ASrHPTQTIC SOLOtXOB A 0 * - 1 . 1 0 0 * 1 . 0 5 , Z l ( 0 , 1 ) , B C ( I . X I « S - 0 

B I S . ABS. SCALAB PLOX EIBOI (CLOBALI 

Xt BO. o r x n s s o i i T E a f A i s J i B O . o r s o P O I B T S 

(c) DGF 

EBBOB 

BBBOR 

EBBOB 

UBOB 

IBBOB 

1 '. 

7 . 

4 

8 

16 . 

2 . 8 9 0 - 0 1 

3 . 0 5 0 - 0 1 

3 .0A0 -01 

3 . 0 6 0 - 0 1 

3 . 0 6 0 - 0 1 

1 . 1 4 0 - 0 1 

1 . 3 5 0 - 0 1 

1 . 3 5 0 - 0 1 

1 . 3 5 0 - 0 1 

1 . 1 5 0 - 0 1 

1 . 4 1 0 - 0 2 

3 . 6 9 0 - 0 3 

2 . 9 7 0 - 0 3 

3 . 5 3 0 - 0 3 

2 . 5 2 0 - 0 2 

1 . 9 0 0 - 0 2 

5.OTD-03 

i . B i e - o ) 

1 .030 -03 

8 . 4 9 0 - 0 4 

i r e . ABB. SCALAB ELDZ EllOt (BomOABrt 

Xl BO. 

BBBOB 

BRBOB 

BBBOB 

BBMB 

BRBOB 

o r flIBBH I ITEBTAIS 

.' 
1 

2 

4 

8 

16 

a 

I 2 . 6 5 0 - 0 1 

. 2 . t 4 D - 0 1 

. 9 . 00D-01 

. J . 0 1 0 - 0 1 

. 3 . 0 1 0 - 0 1 

Jt BO. 

4 

1 . 140-01 

1 . 3 7 0 - 0 1 

1 . 3 9 0 - 0 1 

1 . 2 9 0 - 0 1 

1 . 2 9 0 - 0 1 

OP RD POXRTX 

B 

1 .09D-02 

2 . 1 5 0 - 0 2 

3 . 3 0 0 - 0 3 

2 . 3 9 0 - 0 2 

3 . 0 1 0 - 0 3 

1. 

1, 

5. 

5, 

7, 

16 

. 9 0 0 - 0 3 

. 8 1 0 - 0 3 

. 9 5 0 - 0 0 

. 720 -04 

, 000 -04 
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Table 2 .4 . Relat ive sum er ro r of pointwise s c a l a r f lux 
for DBl, DB3 and DGF methods for twenty 
d i s c r e t i z a t i o n s e t s of Benchmark iH 

nine os/Ti • V . U IVTn.TOTIC lOlOTIOi 1 0 * . I , l U O - 1 . 0 1 , 1 1 t 0 . f) , K ( I , I ) , l - O 

(a) DBl 

BBl . ABS. ICILAI PLUI IBAOI 

XI BO. or i n e S B 1 I T I I T 1 L 9 

J '. 2 

(a iOBAll 

J l BO. o r BD POIBTS 

EBBOB 1 0 . 6 0 0 - 0 1 3 . 

BBBOB 2 '. 4 . 6 3 0 - 0 1 3 . 

EBBOB 4 4 . 6 7 0 - 0 1 3 . 

EBBOB a '. 4 . 7 0 0 - 0 1 3 . 

EBBOB 16 '. 4 . 7 1 0 - 0 1 3 . 

110-01 9 . • 1 0 - 0 3 1 .600-03 

060-01 4 . 3 6 0 - 0 3 6 . 0 6 D - 0 1 

OtO-01 3.9AD-03 3 . 0 6 0 - 0 3 

OaO-OI 3 . 9 0 0 - 0 3 1 . 5 9 4 - 0 1 

010-01 3 . 9 0 0 - 0 3 1 . 3 1 0 - 0 1 

BXl.. ABS. 

Xl 1 0 . 

BBBOB 

EBBOB 

BBBOB 

IBBOB 

IBBOB 

o r 

i' 

1 

3 

• 
• 

16 

SCALAB PLOI tBIOB 

XfllSR X I T S B f l l S 

' . 2 

4 . 6 0 0 - 0 1 3. 

. 4 . 4 0 0 - 0 1 1. 

. 4 . 1 6 0 - 0 1 1 

. 4 . 3 9 0 - 0 1 1, 

. 4 . 3 9 0 - 0 1 1 

(BOOIOABT) 

Jt I C . 

4 

. U O - O I 

. 9 1 0 - 0 1 

.asD-01 

. 6 7 0 - 0 1 

. 6 1 0 - 0 1 

OP BO POIITS 

8 

S .010 -03 

3 .B3D-03 

3 . 9 8 0 - 0 3 

1 . 9 1 0 - 0 3 

3 . 0 9 0 - 0 2 

16 

l . a a D - 0 3 

0 . 9 1 0 - 4 3 

3 . 0 1 0 - 4 3 

1 . 3 3 9 - 0 1 

1 .140 -03 

BBAPAC 0 5 / 7 6 BPiu AsranoTic SOLOTIOB AO»I,IDO*I.OS,ZI (O.ii ,BC(I,XI .S>O 

B i t . ABS. SCALAB PLOX BBBOB (6L0BAU 

XI BO. OP X n e s a I lTEIfALS J: BO. OP BB POUTS 

EBBOB 

BBBOB 

BBBOB 

EBBOB 

BBBOB 

, ; 
3 . 

4 

8 . 

16 

4 . 3 4 0 - 0 1 

4. 94 0 -01 

4 . 6 0 0 - 0 1 

4 . 7 0 0 - 0 1 

0 . 7 3 0 - 4 1 

1 .850 -01 

1 . 960-01 

3 . 0 4 0 - 0 1 

3 . 0 7 0 - 4 1 

2 . 0 9 0 - 4 1 

3 . 3 9 0 - 0 3 

1 .6S0-03 

1 . 7 9 0 - 0 3 

3 . 4 9 0 - 0 3 

1 . 0 9 0 - 0 3 

6 . 3 1 0 - 0 0 

1 .110-43 

1 .170-03 

1 . 1 9 0 - 0 1 

1 . 3 1 0 - 0 1 

(b) DB3 
BBL. a U . S C l l t l FLVI IBBOB (BOOBDABI) 

Xl BO. o r iRBaa xasBBtALs J l BO. OP ID POIBTS 

BBBOB 

BBBOB 

BBBOB 

BBBOB 

BBBOB 

1 '. 

3 . 

4 

8 . 

16 . 

4 . 3 0 0 - 0 1 

4 . 1 9 O - 0 1 

4 . 1 5 0 - 0 1 

, 4 . 3 5 f t - 0 1 

4 . 1 5 0 - 0 1 

1 . 8 9 > 0 t 

1 .870 -01 

I . B I D - O I 

1.B7O-01 

1.B70-01 

3 . 3 9 0 - 0 3 

1 . 4 6 0 - 0 3 . 

1 .460 -02 

1 . 0 8 0 - 0 2 

1.4BB-02 

8 . 3 1 0 - 0 0 

1 . 0 6 0 - 0 1 

1 . 0 6 0 - 0 1 

1 .480 -03 

1 . 4 6 0 - 0 1 

BBAPAC 4 5 / 7 6 B P « l ^ A S l a n O T I C SOLOTIOB A 0 * > 1 , B B 4 - 1 . 0 9 , I ] ( 0 , 1 | , B C ( I , Q . S * 4 

(c) DGF 

BBL. ABS. SCALAB PLOI BIBOB (CLOBAD 

Xt BO. or IBCSB IBTEBfALS Ji BO. OP BO POIITS 

J i X 0 8 
X . 

BBBOB 

EBBOB 

BBBOB 

OBOB 

EBIOB 

1 ', 

7 , 

4 

8 . 

16 

0 . 1 3 0 - 0 1 

4 . 9 6 0 - 0 1 

0 . 6 9 0 - 0 1 

0 . 7 0 0 - 0 1 

4 . 7 3 0 - 0 1 

1 . 6 1 0 - 0 1 

3 . 0 1 D - 0 1 

3 . 0 9 0 - 0 1 

3 . 0 6 0 - 0 1 

3 . 0 9 0 - 0 1 

3 . 1 9 0 - 0 3 

4 . 0 3 0 - 0 3 

3 . 9 3 0 - 0 2 

1 . 6 4 0 - 0 2 

3 . 9 4 0 - 0 3 

3 . 1 0 0 - 4 3 

a . i a o - o i 

3 . 1 5 3 - Q l 

1.9BO-01 

i . ; i = - o i 

BBL. ABS. BCALAB PlOt IIBOB (BOUB0AB1) 

Xl BO. 

l a r o B 

r t p o a 

BBBOI 

aaaoa 

BBBOB 

o r I R E 9 I 

,V. 
1 ', 

a . 
4 

8 

16 . 

«. 
4. 

4. 

4, 

4, 

I ITBBfALS 

2 

130-81 

1 1 0 - 0 1 

110 -01 

loO-OI 

. 3 9 0 - 0 1 

J l BO. 

a 

i . a o o - 0 1 

i . a i D - o i 

i . a o o - o i 

i . a i o - o t 

I . 8 T B - 4 I 

o r 41 r o i B i B 

B 

3. 150-03 

1 100-43 

i . i i D - o a 

J . M D - 0 2 

j . o B o - o a 

16 

a .74B-oa 

1 . 6 1 0 - 0 ) 

a .410 -00 

a . i u - 0 4 

t . 0 1 0 - 4 1 
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2.2.2 Benchmark Problem #2, a transient eigenmode 

The cross sections and dimensions of BPl apply to the cell in BP2. 

Here the transient eigenvalue spectrum |v| £ 1 is discretized into 2N-̂ 2 

nodes {v^^ln=0,l,...,N} = {±0,±.94919,±.99,±1.} for N = 3. The choice 

of the V is arbitrary. In this case we choose to generate the benchmark 
n 

problem defined by 

i('g(x,y) = q_|_Q(x,y) 

which corresponds to Eqn. (1.9) with all a^ = 0 except for a^_ = 1, 

where q (x,y) is the mode corresponding to the interval 0 £ v <̂  .94919. 

Figure 2.6a,b,c illustrates the angular and scalar flux traverses 

for BP2. Note in particular that the q ^(x,y) mode contains a flux dis

continuity along y at y = 0 for the cell boundary at x = 0. 

The same twenty sets of space/angle mesh discretization are applied 

in BP2 as in BPl and incident flux boundary conditions are given by 

i(; (x,y) at the cell boundaries. The maximum absolute scalar flux error 
a 

II (J) 11 with algebraic sign is tabulated in Table 2.5a,b,c for each of the 

twenty problems. Comparison of the results for DBl, DB3 and DGF shows 

that the DB3 method is more accurate than DBl and DGF, a result expected 

and observed in BPl. Counter to BPl, however, error convergence in BP2 

is not achieved in Table 2.5a,b,c for J > 2. The DGF method has a better 

error performance than the DBl method for BP2; the magnitude of the 

tabulated errors are two to three times smaller for DGF than for DBl. 

Figures 2.7a,b,c display the scalar flux maximum absolute error 

traverse for eight selected space/angle mesh refinements (same as BPl). 

It is obvious from the figure that the errors are largest for space/angle 

mesh discretization outside of an optimal band. The error traverses 

for successively finer mesh refinements oscillate about zero with the 

maximum error shifting successively closer to x = 0 where the angular 

flux discontinuity occurs. 

The maximum angular flux error || ijj || with algebraic sign is tabu-
Ijj CO 

lated in Tables 2.6a,b,c. The tabulation indicates that the angular flux 

error is much larger for BP2 than for BPl. The largest error is always 

located along the y coordinate with minimum absolute value for a given 

y discretization J. 
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BENCHMARK 2 SCRLfIR TLUX PHID(X) 

(a) 

BENCHnflRK 2 RNG FLUX PSIB(X,nU) M U - ( - l , 0 , , 0 1 , , 2 5 , , 5 , 1 ) 

(b) 

o - P S I B ( X , . 5 ] 
. -PS1B1X, .2S) 
• -PSIB(X, .01 I 
» - p s i e i x , o ) 
. - P S 1 B ( X , - 1 ) 

BENCHMARK 2 RMG FLUX PSIB(X,MU) X -10 , , 0 0 1 , , 0 1 , , 1 , , 5 , 11 

( c ) 

ICKND 
o-PSlBio,r'ji 
o-PSIBi.oci,mi 
.-psiei.oi.nu) 
•-Pt.IBl. l,;iui 
»-pr.iB(.;...-ui 
• -psiod.ryi 

Figure 2.6. Flux Distributions for Benchmark #2 

(a) scalar flux '('DCX) 
(b) angular flux traverse iijg(x,y) along x for fixed y 
(c) angular flux traverse i);g(x,y) along y for fixed x 
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Table 2.5. Maximum absolute scalar flux error II(t I| tabulated 
" -E'loo 

for twenty space/angle mesh discretization sets of 
Benchmark #2 for the DBl, DB3 and DGF methods 

•CAPIC Oi/li BP)2.1 TatHSIEHT SOLOTIOa t .O ' I .HUO' I .OS.Z: (0, 1) ,BC(1,11 .S 'O 

BtZ. IBS, SOLID PLUI I'DliOB KO LCCATIOH (CLOBtl) 

I : 10 . o r xnesH ISTEKVALS J : no. o r BD p o i a t s 

3 '. 1 « a 

(a) DBl 

BBBOI 
tXACT 
I LOC 

EBBOB 
t l i C I 
I IOC 

EBBOB 
I I I C T 
I IOC 

EBBOB 
E I ACT 
X LOC 

EBBOB 
E l t C T 
I LOC 

1 

2 

« 

a 

16 

, - 3 . 9 7 D - 0 2 
. 0 .033 
. 1,000 

'. - 1 . 2 3 0 - 0 1 
. 0 .044 
. O.SOO 

. - 1 . " U O - O I 
, 0 . 1 7 7 
. 0.2S0 

, - 1 . S 5 0 - 0 1 
, 0 . 1 7 7 
. 0 .250 

. - 1 , « 5 D - 0 1 

. 0 . 1 7 7 

. 0 . 2 5 0 

1.6110-01 
0 ,033 
1.000 

9 . 2 1 0 - 0 2 
0.0911 
0 . 5 0 0 

3 . S6I>-02 
0.0911 
0 . 5 0 0 

3 . 0 6 0 - 0 2 
0 . 0 7 1 
0 .625 

- 3 . 2 6 0 - 0 2 
• 0 . 3 3 1 

0 .063 

1 . 6 9 0 - 0 1 
0 . 0 3 3 
1.000 

1 . IOD-01 
0 .094 
0 . 5 0 0 

5 . 8 7 0 - 0 2 
0 . 1 7 7 
0 .2S0 

2 . 4 4 0 - 0 2 
0 . 2 6 1 
0 . 1 2 5 

9 . 5 6 0 - 0 3 
0 . 2 6 1 
0 . 1 2 5 

1.6B0-01 
0 . 0 3 1 
1.000 

1 .100-01 
0 .094 
0 .500 

6 . 0 7 2 - 0 2 
0 .177 
0 .250 

3 .19D-02 
0 .261 
0 .125 

1 .560 -02 
0 .331 
0 .063 

BCAPAC OS/76 BPI2.2 TBiHSIEBT SOLUTION A.0-1,100.1.OS,Z: (0,1) ,BC(1,1) ,5*0 

BAI. IBS. SCALAB rLDZ EBBOB ABO LOCATIOB (GLOBAL) 

(b) DB3 

I : BO. 

BBBOB 
EXACT 
I LOC 

EBBOB 
EXACT 
Z LOC 

EBCOn 
EXACT 
Z LOC 

EBBOB 
EXACT 
I LOC 

EBBOB 
EXACT 
Z LOC 

or 

3 
I 

1 

2 

« 

a 

16 

XnBSB IHTEBTALS J : BO. 

• 

, • 
• 

, • 

, 
-
, • 
; 
. . 

2 

- 6 . 7 2 0 - 0 2 
0 .033 
1.000 

- 1 . 3 0 D - 0 1 
0 .094 
0 .500 

- 1 . 4 5 0 - 0 1 
0 . 1 7 7 
0 .250 

- 1 . 4 5 0 - 0 1 
0 . 1 7 7 
0 ,250 

- 1 . 4 5 0 - 0 1 
0 . 1 7 7 
0 .250 

« 

- 7 . 0 7 0 - 0 3 
0 . 0 3 3 
1 ,000 

2 . 3 S 0 - 0 2 
0 ,094 
0 , 5 0 0 

2 . 7 3 0 - 0 2 
0 .094 
0 . 5 0 0 

2 . 9 6 0 - 0 2 
0 . 0 7 1 
0 .62S 

- 3 . 3 1 0 - 0 2 
0 . 3 3 1 
0 . 0 6 3 

Of an POIBTS 

a 

- 7 . 2 1 0 - 0 2 
0 .033 
l.OOO 

- 3 . 1 9 0 - 0 2 
0 .094 
O.SOO 

- 2 . 5 8 0 - 0 3 
0 , 177 
0 , 2 5 0 

5 , 1 8 0 - 0 3 
0 . 2 6 1 
0 . 1 2 5 

6 . 2 5 0 - 0 3 
0 . 2 1 2 
0 . 1 8 8 

16 

- 7 . 4 1 0 - 0 2 
0.033 
1.000 

- 4 . 1 1 0 - 0 2 
0.094 
0 .500 

- 2 . 0 8 0-02 
0 .177 
0 .250 

- 8 . 0 7 0 - 0 3 
0 . 2 6 1 
0.12S 

- 5 . 7 6 0 - 0 4 
0 . 2 6 1 
0.12S 

BBAPAC 05/76 BPI2.4 TBABSIEMT SOLOTIOS A.O'1,100-1.05,1:(0,1),BC(I,I|,S'0 

BAZ. ABS. SCALAB FLOZ EBSOB ABO LOCATIOB (GLOBAL) 

I : BO. o r ZBE.ia imcRVALS J : BO. or RO P O K T S 

(c ) DGF 

EBBOB 
EXACT 
I LCC 

BBBOR 
EIACT 
I LOC 

BBBOB 
BXACT 
Z IOC 

EBBOB 
EIACT 
I LOC 

EBBOB 
EZACT 
X LOC 

I 

1 

2 

« 

a 

16 

2 

'. - 7 . 8 2 0 - 0 2 
. 0 . 033 
. 1.000 

. - 1 . 2 2 0 - 0 1 

. 0 .094 

. O.SOO 

. - 1 . 4 3 0 - 0 1 
, 0 .177 
. 0 ,250 

. - 1 . 4 6 0 - 0 1 
. 0 . 1 7 7 
. 0 .250 

. - 1 . 4 5 0 - 0 1 
, 0 . 1 7 7 
. 0 . 2 5 0 

« 

6 . 1 4 0 - 0 2 
0 . 0 3 3 
1.000 

4 . 6 8 0 - 0 2 
0 .094 
O.SOO 

3 . 0 7 0 - 0 2 
0 .05S 
0 . 7 5 0 

2 . 9 7 0 - 0 2 
0 . 0 7 1 
0 . 6 2 5 .. 

- 3 . 2 7 0 - 0 2 
0 . 3 3 1 
0 . 0 6 3 

a 

S . 9 6 0 - 0 2 
0 .033 
1.000 

4 . 2 4 0 - 0 2 
0 .094 
O.SOO 

2 . 1 7 0 - 0 2 
0 . 1 7 7 
0 , 2 5 0 

1 . 0 3 0 - 0 2 
0 . 2 6 1 
0 . 1 2 5 

6 . 9 6 0 - 0 3 
0 . 2 1 2 
0 . 1 8 8 

16 

5 . 9 2 0 - 0 2 
0 .033 
1 .000 

4 . 1 6 0 - 0 2 
0 .094 
0 , 5 0 0 

1 .980 -02 
0 . 1 7 7 . 
0 , 2 5 0 

9 , 3 9 0 - 0 3 
0 ,261 
0 .125 

a . 7 3 0 - 0 3 
0 .331 
0 . 0 6 3 
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(a) DBl 

(b) DB3 

BENCHMARK 2.1 SCflLflR FLUX ERROR PHIE(XJ FOR 1-8 OR f1-8 

o-PHIE(X) 8,2 
o-PHIE(X) 8,i 
*-PHieiX) 1,8 
• -PHIEIX) 2,8 
¥-PHIEIX) i,B 
• -PHIE(X) 8,8 
»-PHIEIX)16,B 
• -PHIE1X) 8,1S 

*-6 

BENCHMflRK 2 SCflLflR FLUX ERROR PHIE(X) FOR 1-8 OR M-S 

BENCHMflRK 2.4 SCflLflR FLUX ERROR PHIE(X) FOR 1-8 OR M-8 

(c) DGF 

Figure 2.7. Scalar flux error ^^(x) for (a) DBl, (b) DB3, (c) DGF 
methods for eight selected discretizations of Benchmark if2 
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Table 2.6, Maximum absolute signed angular flux error ±||il; || 
tabulated for twenty space/angle discretizatioS 
sets of Benchmark #2 for DBl, DB3 and DGF methods 

BEftPAC 0 V 7 6 B r i 2 . 1 TBiMSIENT SOLOTIOB A*0-1, NUO-1.0S. I ; (0, 1) ,BC (1 ,1) ,S«0 

(lAX. IBS. leCTOR PLOI EBBOB IHD LOCATION (GLOBAL) 

I t BO. o r incsH IHTCBVALS J : BO. o r HU POTHTS 

J ' 3 4 B 

(a ) DBl 

EBBOB 
EXACT 
B t o e 
•BLOC 

ZBBOB 
BXACT 
X LOC 
BOLOC 

BBBOR 
BIACT 
X LOG 
BDLOC 

EftCOR 
XZACT 
X LOC 
BULOC 

IBBOB 
BXACT 
X LOC 
BOLOC 

1 

3 

« 

8 

16 

BBAPAC OS/76 

. - 2 . 7 0 D - 0 3 

. O.0U3 

. 0 . 0 

. -O.SOO 

. - 2 . 5 7 0 - 0 3 

. 0 . 0 4 3 

. 0 . 0 

. -O.SOO 

. - 3 . 5 0 D - 0 3 

. 0 . 0 4 2 

. 0 . 0 

. - 0 . 5 0 0 

. - 3 . 6 8 0 - 0 2 

. 0 . 0 2 6 

. 0 . 1 2 5 

. -O.SOO 

. - 3 . 7 0 0 - 0 2 

. 0 . 0 3 6 

. 0 . 0 6 J 

. -O.SOO 

B P I 3 . 3 

3 . 19D-01 
0 . 0 2 2 
1 . 0 0 0 
0 . 2 1 1 

1 . 2 6 0 - 0 1 
0 . 118 
0 . 5 0 0 
0 . 2 1 1 

2 . 9 3 0 - 0 3 
0 . 3 1 5 
0 . 2 5 0 
0 . 3 1 1 

B. 7 1 I H 0 3 
0 . 0 7 S 
0 . 6 2 5 
0 . 2 1 1 

6 . 6 2 D - 0 3 
0 . C 3 9 
0 . S 1 3 
0 . 3 1 1 

7 . 4 4 0 - 0 1 
0 . 0 1 0 
1 . 0 0 0 
0 . 0 6 9 

5 . 4 3 0 - 0 1 
0 . 0 3 0 
0 . 5 0 0 
0 . 0 6 9 

3 . 9 2 D - 0 1 
O.Otiit 
0 . 2 5 0 
0 . 0 6 9 

1 . 0 2 0 - 0 1 
0.3411 
0 . 1 2 5 
0 . 0 6 9 

2 . 3 0 0 - 0 3 
0 . U 9 3 
0 . 0 6 3 
0 . 0 6 4 

TBABSIBBT SOLOTIOB A « 0 - 1 , 

9 . 5 S D - a i 
0 . 0 0 9 
1 . 0 0 0 
0 . 0 2 0 

8 . 6 7 D - 0 1 
0 . 0 2 5 
0 . 5 0 0 
0 . 0 2 0 

7 . 2 7 D - 0 1 
0 . 0 U 8 
0 . 2 5 0 
0 . 0 2 0 

5 . 1 4 0 - 0 1 
0 . 0 7 4 
0 . 1 2 S 
0 . 0 2 0 

2 . 6 1 D - 0 1 
0 . 1 3 6 
0 . 0 6 3 
0 . 0 2 0 

, 1 1 0 0 - 1 . 0 5 , 1 : 1 

i l l . IBS. fECTOB PLUI EBBOB AND LOCATION (GLOBAL) 

(b) DB3 

I : BO. 

ERPOB 
BXACT 
X LCC 
SDIOC 

EBBOB 
EZACT 
X LOC 
BOLCC 

BRBOB 
BXACT 
Z IOC 
BOLOC 

BBROB 
EXACT 
X LOC 
BDLOC 

BBBOB 
EXACT 
X LOC 
BDLOC 

o r IBESH IBTEBTALS J : BO. 

J 
X 

1 

2 

« 

S 

1 6 

3 

' - 2 . 5 3 0 - 0 3 
. 0 . 0 6 2 
. 0 . 0 
. - 0 . 5 0 0 

" - 3 . 5 3 0 - 0 3 
. 0 . 0 4 3 
. 0 . 0 
. - O . S O O 

I - 3 . 5 3 3 - 0 3 
. 0 . 0 4 2 
. 0 . 0 
. - 0 . 5 0 0 

! ' 3 . 6 6 0 - 0 2 
. 0 . 0 2 U 
. 0 . 1 3 5 
, - 0 . 5 0 0 

! - 3 . 7 0 D - 0 3 
. 0 . 0 3 4 
. 0 . 0 6 3 
. -O.SOO 

« 

- 6 . 6 3 0 - 0 3 
0 . 0 2 2 
1 . 0 0 0 
0 . 2 1 1 

S . 7 7 0 - 0 3 
0 . 0 1 7 
0 . 5 0 0 

- 0 . 2 1 1 

6 . 2 6 0 - 0 3 
0 . 0 1 7 
0 . 5 0 0 

- 0 . 3 1 1 

6 . 2 9 0 - 0 3 
0 . 0 1 7 
0 . 5 0 0 

- 0 . 3 1 1 

6 . 4 1 0 - 0 3 
11 .019 
0 . 4 3 0 

- 0 . 3 1 1 

o r DO POINTS 

6 

- 4 . C 9 0 - 0 1 
0 . 0 1 0 
1 . 0 0 0 
0 . 0 6 9 

- 1 . 7 4 0 - 0 1 
0 . 0 3 0 
0 . 5 0 0 
0 . 0 6 9 

- 3 . 7 6 0 - 0 3 
O.OOU 
0 . 2 5 0 
0 . 0 6 9 

- 4 . 1 9 D - 0 3 
0 . 2 4 4 
0 . 1 2 5 
0 . 0 6 9 

1 . 4 1 0 - 0 3 
O.OSS 
0 . 1 2 5 

- 0 . 0 6 9 

16 

- 7 . 9 3 0 - 0 1 
0 . 0 0 9 
1 . 0 0 0 
0 . 0 2 0 

- 6 . 1 7 0 - 0 1 
0 . 0 2 5 
0 . 5 0 0 
0 . 0 2 0 

- 3 . 8 0 0 - 0 1 
0 . 0 4 8 
0 . 2 5 0 
0 . 0 2 0 

- 1 . 4 9 0 - 0 1 
0 . 0 T 4 
0 . 1 2 5 
0 . 0 2 0 

- 2 . 9 6 D - 0 3 
0 . 1 3 6 
0 . 0 6 3 
0 . 0 3 0 

BP«3.4 TIABSIEliT SOIUTZOB A*0-I.BUO'I.OS.X: (0,1) ,BC(X,T) ,<:fO 

RAX. BBS. TCCTOP rLOX EBIOB ADD LOCATIOB (GLODAL) 

(c) DGF 

Z l BO. 

EBBOB 
EXACT 
X LOC 
BOLOC 

XBBOB 
EXACT 
X IOC 
BDLOC 

XRSOB 
EXACT 
I LOC 
BDLOC 

XRRCR 
ZXACT 
I LOC 
BOLOC 

BBBOB 
BXACT 
X IOC 
BQLOC 

or 

J 
I 

1 

2 

6 

B 

16 

IBESO IMTEOVALS J : BO. 

I 3 

[ - 3 . 6 3 0 - 0 3 
. 0 . 0 4 3 
. 0 . 0 
. - 0 . 5 0 0 

'. - 2 . 6 4 0 - 0 3 
. 0 . 0 4 2 
. 0 . 0 
. - 0 ^ 5 0 0 

- 3 . S i t0 -03 
. 0 . 0 4 3 
. 0 . 0 
. - 0 . 5 0 0 

' - 3 . 6 6 0 - 0 2 
. 0 . 0 3 6 
. 0 . 1 3 5 
. - 0 . 5 0 0 

I -3.69 0-0 3 
. 0 . 0 3 4 
. 0 . 0 6 3 
. - 0 . 5 0 0 

4 

1 . 0 2 0 - 0 1 
0 . 0 2 2 
1 . 0 0 0 
0 . 2 1 1 

3 . 3 7 0 - 0 2 
0 . 110 
0 . 5 0 0 
0 . 2 1 1 

8 . B 7 D - 0 3 
0 . 0 3 0 
0 . 2 5 0 

- 0 . 2 1 1 

7 . 2 1 D - 0 3 
0 . 0 3 2 
0 . 3 7 5 

- 0 . 3 1 1 

6 . 6 4 0 - 0 3 
0 . 0 1 9 
0 . 4 36 

- 0 . 2 1 1 

o r BO POINTS 

B 

J . 4 1 0 - 0 1 
0 . 0 1 0 
1 . 0 0 0 
0 . 0 6 9 

1 . 5 5 0 - 0 1 
0 . 0 3 0 
0 . 5 0 0 
0 . 0 6 9 

6 . 5 6 n - 0 3 • 
o.oat 
0 . 2 5 0 
0 . 0 6 9 

1 . 2 5 0 - 0 3 
0 . 3 4 4 
0 . 1 3 5 
0 . 0 6 9 

- 3 . 13D-03 
0 . 0 6 6 
0 . 0 

- 0 . 0 6 9 

16 

4 . 6 2 D - 0 1 
0 . 0 0 9 
i.roo 
0 . 0 3 0 

2 . 5 5 0 - 0 1 
0 . 0 3 5 
0 , 5 0 0 
O.C20 

2 . 0 4 0 - 0 1 
0 . 0 4 0 
0 . 3 5 0 
0 . 0 3 0 

1 . 3 9 0 - 0 1 
0 . 0 7 4 
0 . 135 
0 . 0 2 0 

5 . 3 6 0 - 0 3 
0 . 136 
0 . 0 6 J 
0 . 0 2 0 
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2.2.3 Benchmark Problem #3, a one cell least squares modes analysis 

BP3 (and BP4) is based on a two cell reference problem with dimen

sions 0 1 X 1 .5 in cell I and .5 <. x 1 1-5 in cell II. An Isotropic 

source S = .5 is in cell I. Compositions of the two cells are identical 

and have the same cross sections defined for BPl. Boundary conditions 

are reflecting at x = 0 and vacuum at x = 1.5. 

The transient eigenvalue spectrum -1 ̂  '̂  £ 1 is discretized into 

the following six intervals {v^ } = {0,±.94919,±.999,±1.}. The dis

cretization is based on knowledge and experience with the behaviour of 

the function A(v) for various values of c, the number of secondaries per 

collision. Case and Zweifel (1967) Illustrate (Figure 2.8) the behaviour 

of g(v,c) (Eqn. 1.23b) for various values of c. 

°-° °' 0-̂  0.3 0.4 0.5 0.6 0.7 0.3 oig UO " 

Figure 2.8. The function g(v,c) 
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For simple choices of ^(\i) in Eqn. (1.22a) such as ijj(y) = p for 

k=0,l,... it is easily shown that g(v,c) plays a dominant role in the be

haviour of A(v) in the neighborhood of v = 1, e.g. when t|j(lJ) = 1 then A(v) 

= (l-c)g(v,c) and when iKy) = \i then A(v) = v(l-c)g(v,c) . For c = .5129 

in BP3 we can estimate that g(v,c) in Fig. 2.8 has a maximum in the 

neighborhood of v = .95. Therefore we chose a value in that neighborhood 

as one of the v discretization points. The choice v_^ = 0 and v̂ ^̂  = ±1 

are obvious; the choice of v^- ~ ±»999 is necessary to include the 

special basis element Eqn. (1.12b) which is designed to approximate the 

logarithmic singularity in A(v) for v = ±1. 

There are six transient eigenmodes q, (x,y) (n=0,l,2) Eqn. (1.13a,b) 
±n 

corresponding to the v discretization and two asymptotic eigenmodes 
q^_(x,y) Eqn. (1.10a,b). Note that we may alternately refer to the 
~ ± 

asymptotic eigenmodes with the notation q ±(x,y) where the subscript 0 

is a carryover from the Case notation. In cell II of the reference prob

lem we want to generate a benchmark problem with solution i]-' (x,y) which 

is a superposition of the eight homogeneous eigenmodes q, (x,y) (n=0,l,2,3) 
in 

The procedure for obtaining the combining coefficients is denoted by 

modes analysis. Section 1.1.4 gives two modes analysis methods. For 

BP3 the least squares method is chosen with the option of performing 

the least squares analysis at discrete directions y (m=l,2,...,M) along 
m 

the incident flux boundaries of the cell; the emergent boundaries are 
omitted. An initial reference solution i|̂  (x,y) for the two cell problem 

R 

is obtained using the DB3 method with thirteen equally spaced spatial 

coordinates x = .1251 (1=0,1,...,12) and a DPg quadrature set for an 

S,, angular approximation. Figure 2.9 illustrates 'l'̂ (x,y) for traverses 
lo K-

along X for fixed ±y = .98,.76,.41,.02 and for traverses along y for fixed 

X = .251 (1=0,1 6). At the cell interface x = .5 we notice the 

angular flux discontinuity due to the source in cell I (Fig. 2.9b). 
At the incident flux cell boundaries of cell II, ij; (x,y) is linearly 

K 

interpolated to obtain a solution t|j (x,y) defined at the y discretiza-

tlon coordinates assigned to the least squares problem. Experimentation 

has indicated that for a fixed set {v^ } of the transient spectrum dis

cretization the {y } should be chosen by the formulas: 
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BENCHMnKK 3,4 RNG FLUX PSIR(X,MU) m - + - ( . 9 8 , .76 , . 4 1 , .02) 

(a ) 

1-2 1-3 I - l I-S 

X 

LEGEND 
D-PSIRtX, .93) 
o-PS]R(X, .76) 
« -PSIR(X , .41) 
• -PSIR(X,.02) 
x-PSIR(X,-.02J 
• -PSIRtX,-.•»!) 
»-PSIR(X,-.76) 
• -PSIR(X,-.S8) 

BENCHMflRK 3,4 RNG FLUX PSIR(X.MU) X - 0 , . 2 5 , . 5 , . 75, i . , i . 2 5 , i . 5 

(b) 

0-0 0-1 

MU 
LEGEND 

o-PSIR(0,mi) 
o-PSIR[.2S,nU) 
*-PSIRt.5,MIJ) 
+ -PSIRC.7S,nU) 
x-PSIR(l.,r',U) 
o-Pr>IR(l.S5,MU) 
»-PSIRll,5,hU) 

1-
0-6 0-8 

Figure 2.9. Angular flux traverses for DB3 reference solution 
(h = .125, DPg) - (a) traverse along x for fixed*y, 
(b) traverse along y for fixed x 
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(2.25a) 1̂0 "̂  ''O " " ° 

n-1 n-l-1 T „ T 
(2.25b) y^ = 2 " " •̂'̂"•'• 

(2.25c) ^^= \ n = N 

This choice places the y in the neighborhood of the maximum amplitude 

of each eigenmode q (x,y). Note that two zero values of y denoted sym

bolically by iO are used to permit treatment of discontinuities at 

boundaries and interfaces when they are present. 

Figure 2.10 illustrates the resulting benchmark solution i(j„(x,y) in 
n 

cell II generated by the least squares modes analysis using only eight 

flux values (four at each incident boundary). The {y } for the least 

squares are calculated by Eqn. (2.25) using the jv } given above. The 
n 

display is in the format of Fig. 2.9. 
A comparison of i('„(x,y) and 'l̂ „(x,y) along y at the cell boundaries 

K B 
X = .5 and x = 1.5 and the scalar fluxes <j)„(x) and (f_(x) is given in 

K B 

Fig. 2.11. The large rectangular symbols indicate the least squares y 

discretization. The maximum relative scalar flux difference is about 

4% near the interface at x = .5. The maximum angular flux difference 

occurs at the interface x = .5 in the y interval (.9,1.) and is approxi

mately 9%. Several factors which can contribute to the difference are: 

(1) coarseness of the v discretization 
n 

(2) placement of the v coordinates 
n 

(3) placement of the y coordinates for the least squares 

(4) value of the parameter a in the q ^ modes 

The above four items must be thoroughly understood for implementation 

of this modes analysis technique as a new numerical transport theory 

method. Our present objectives are to generate exact benchmark problems 

which are related to physically meaningful problems, ij; (x,y) satisfies 
B 

the objectives and is used for the benchmark error performance analysis 

at the end of this section. 
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BENCHMARK 3 flNG^LU^<^SmO<^MU^^ 
60 

(a) 

IXGENQ. 
o-PSIBIX,l) 
o-PSlBlX,.5) 
»-PSIB(X,,l) 
• -PSIBlX,-0) 
x-PSIBCX,-0) 
• -PSlBtX,-.!) 
»-PSIB(X,-.5) 
• -PSIB(X,-1) 

^^„„„^„,^P^^^^^^X.HU1X-5,.75,1.,1.25,1.5 

(b) 

o-PSlBt.5,nU) 
o-PSIBl.75,nU) 
»-PSiBii.,nu) 
• -PSlBll.25,nU) 
x-psiBti.s.nu) 

Fieure 2.10. Angular flux for Benchmark ^3 . f . ^ 
' (a) Angular flux traverse * (x,y) a ong x for fixed y 

(b) Angular flux traverse ^^(x.y) along y for fixed x 
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(a) 

BENCHMflRK 3 SCflLflK FLUX PHIR(X) VS. PHIP[X) 

i-5 

LEGEND 
o-PHIR^X) 
o-PHIB(X) 

BENCHMARK 3 .PSIR[X,MU) VS. PSIB(X,MU 

(b) 

Figure 2.11, 

-0-2 TTU 0-2 0"4 " 0-6 0-8 !•• 
MU 

LEGEND 
a-PSIR(.5,nU) 
o-PSIR(1.5,hU) 
A-PSIB(.5,nUJ 
+ -PSIi3(1.5,HU) 

Comparison of reference and benchmark solutions for Benchmark #3 
(a) Scalar flux (t)ĵ(x) vs. <()gCx) 

(b) Angular flux ,);̂ (x,y) vs. i(»g(x,y) at x = .5 and x = 1.5 
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We now examine some details of benchmark solution '|'g(x,y). Figure 

2.12(a) illustrates the transient combining coefficients A(±v^) = a^^ 

(n=0,l,2) obtained by the least squares. Also Included is A(±l) = 0. 

The asymptotic coefficients a-± are tabulated at the lower right of the 

figure. Notice that a_- Si 0 and A(v) s; 0 (v _< 0) . This is attributed to 

the vacuum condition at the boundary x = 1.5 since the coefficients a 

correspond to modes q (x,y) which represent contributions of a source at 

the right boundary of the cell. The behavior of â-f- and A(v) (v ̂  0) are 

likewise controlled by the incident flux distribution at x = .5. 

The scaled modes a, qj_(x,y) are illustrated in Fig. 2.13 and 2.14. 
in in 

i|;„(x,y) is Included to Illustrate the superposition of the modes. Modes 
13 

0̂*̂ 0 ^^^ W corresponding to v = 0 and v = .94919 and the asymptotic 

mode aQ+q̂ -l- are easily observed for v ̂  0. Notice that in Fig. (2.13a) 

the flux discontinuity at y = 0 is largely contributed to by a q . The 

rapid decay of q^ as illustrated in BP2 forces i* (x,y) to behave 

similarly, so that at x = 1.5 the discontinuity is relatively very small. 

The eigenmode q2(x,y) is barely visible in Fig, 2.13, but in 

Fig. 2.14a,b two scale magnifications illustrate the mode behaviour for 

.90 1 y ̂  1. and .99 ̂  y ̂  1. respectively. In Fig. 2.14a we note that 

the steepness in the gradient of q^ for .99 j< y £ 1. cannot be matched by 

any of the other modes including the asymptotic q̂-t- so that ^\> (x,y) has a 

10% drop at y = 1. This deficiency is reflected in the results of the 

least squares which includes a data point at y = 1. Figure 2.11 shows 

that the least squares matches the boundary point y = 1 excellently, but 

away from the boundary the 10% difference reappears. Additional least 

squares points and varied placement are under investigation. 

Figures 2.12a, 2.15. 2.16, 2.17 and 2.18 Illustrate BP3A a problem 

similar to BP3 in all respects except that the parameter a = 1 instead of 

a = .18, where a is the exponent of the Chapeau function in q (x,u). 

The main difference we note is the error in *g(x,y) is reduced'L the 

interval .95 ̂  y < 1. m the expanded scale plots, the change in q is 

quite evident. The mode has a well defined minimum near y = .999 in con

trast to BP3 where the mode continues decreasing until y = .99975. The 
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BENCHMflRK 3 fl(NU] FOR CELL I I FOR N-3,flLPHfl-.18 

(a) 

- ^§ =3̂  

3 z 

I 1 — 

1 =ô B e-+-
— I — 

-NJ 
HiO 

— I 1 1 1 

0-2 OM 0-6 0-8 1 

NUO- 1-0500 
LEGEND 

o-fl(NU) CELL I I fl0+- 0-2556 flO 0-0093 

BENCHMflRK 3fl fl(NU) FOR CELL II FOR N=3,flLPHfl=l 

(b) Z3 z 
*-^ I 
0 1 , 

— I 1 

0-6 0-8 1 
n I 1 1 — 

Tg ZQTB =rre e-»-
— I — 
- 0 - 3 -

T r 
i ) |0 0<2 0-4 

J^J 

NUO- 1-0500 
LEGEND 

o-fl(NU) CELL I I n0+- 0-2443 flO 0-0088 

Figure 2.12. Combining coefficients A(v) and ag± from least squares 
modes' analysis 
(a) Benchmark #3 with d = .18 
(b) Benchmark #3A with a = 1. 
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BENCHMflRK 3 EIGENMODES fl(N)xQ(X,MU,N) TRAVERSE AT X-.5 

(a ) 

LECENO 
p-ot.s,nu,D-') 
o-0(.5,riu,*0) 
*-ot.5,nu,i) 
• -0(.5,mJ,2) 
x-0(.s,nu,o-) 
• -ot.s,nu,-0) 
»-ot.5,nu,-i) 
• -0l.5,nU,-2) 
»«-PSIB(.5,mj) 

BENCHMflRK 3 EIGENMODES fl(N)><Q(X,MU, N) TRflVERSE AT X-1 .5 

(b) 

LEGEND 
o-Qll.5,nu,0>) 
0-0(1.5,nu,*oi 
*-0(i.5,nu,i) 
• -o«i.5,nu,2) 
«-0(i.5,nu,o-) 
• -0(i.5,nu,-o) 
' -0( i .s ,nu, -n 
• -0(1.5,nU,-2) 
"-PsiBd.s.nui 

Figure 2 .13 . Contributions of elementary solutions a^q (x,y) 

to ij,'g(x,y) in Benchmark #3 

(a) y traverse at x = .5, (b) y traverse at x = 1.5 
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BENCHMARKS EIGENMODES A (N)»<Q(X,MU,N) AT X-. 5 MU(.9,1] 

(a) 

^•EGENO 
o-Ot.S,nU,0+) 
o-ot.s,nu,*0) 
*-0t.5,nu,n 
• -oi.s,nu,2) 
>«-0(.5,nu,o-) 
«-ot.s,nu,-0) 
• -ot.5,nu,-n 
• -ot.s,nu,-2) 
•«-PSIB(.5,t1U) 

BENCHMARK 3 EIGENMODES A(N)xQ(X,MU,N) AT X-.5 MU(.99,1) 

(b) s; 

LEGEND 
o-0t.5,riU,0*l 
o-0t.S,f1U,*01 
*-0l.5,f1U,l) 
4-0(.5,t1U,2) 
*-0l.5,nU,0-) 
• -0(.5,MU,-0) 
»-0(.5,nu,-ii 
• -ot.s,nu,-2i 
••-psiei.s.nu) 

Figure 2.14. Detailed enlargement of elementary solution 
contributions to Benchmark #3 
(a) .9 <_ y £ _ 1 , (b) .99 < y < 1 
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BENCHMARK 3A ANG FLUX PSIB(X,MU) MU-+-(1, .5,. 1,0) 

(a) Si 

LEGEND 
o-PSIB(X,l) 
o-PSIB(X,.5) 
*-PSIB(X,.l) 
+ -PSIB(X,*0) 
x-PSIBlX,-0) 
• -PSIB(X,-.l) 
»-PSIB(X,-.5) 
• -PSIBtX,-!) 

BENCHMARK 3A PSIB(X,MU] Xj.5, .55,. 75,1., 1.25,1.45,1.5 
-a-

(b) 

LEGEND 
o-PSIBt.S,nU) 
o-PSIB[.5S,t1U) 
*-PSIBt,75,nU) 
•-PSIB(l,,nU) 
>«-PSIB(1.25,nU) 
->-PSiBn.<5,m) 
»-PSIB(l.5,nU) 

Figure 2.15. Angular flux for Benchmark //SA 

(a) Angular flux traverse tj;g(x,y) along x for fixed y 

(b) Angular flux traverse î g(x,y) along y for fixed x 
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BENCHMflRK 3fl SCflLflR FLUX PHIRIX) VS. PHIB(X) 

LEGEND 
D-PHIR(X) 
o-PHIB(X) 

1-5 

(b) 

BENCHMflRK 3fl PSIR(X,MU) VS. PSIB(X,MU) 
oo 

-1,0 -O'B -0-6 -0-i -0-2 

MU 
LEGEND 

D-PSIR(.5,I1U) 
o-PSIR(1.5,MU) 
A-PSIB(,5,HU) 
+ -PSIB(l,S,hU) 

T 
0-1 

-r 
0-8 

1-0 

Figure 2.16. Comparison of reference and benchmark solutions for Benchmark #3A 
(a) Scalar flux ((>R(X) V S . (|>B(X) 

(b) Angular flux i^(y.,u) vs. II^QC^.P) at X = .5 and x = 1.5 
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BENCHMARK 3A EIGENMODES A(N)xO(X,MU,N) TRAVERSE AT X-.5 

(a) 

LEGEND 
o-0(.5,nu,0-') 
o-0t.5,nu,-'0) 
*-01.5,t1U, 1) 
• -Ol.5,nU,2) 
x-o(.s,nu,o-) 
• -a{,5,nu,-oi 
»-0(.5,nu,-ii 
• -0i.5,nu,-2) 
»«-PSiB(.s,nu) 

BENCHMARK 3A EIGENMODES A(N)xQ(X,MU,N) TRAVERSE AT X-1.5 

(b) 

LEGEND 
0-0(1.5,nu,0-) 
o-Q(j.s,nu,*0) 
*-0(i.5,nu,i) 
• -Q(l.5,nu,2) 
*-oti.5,nu,o-) 
• -Q(1.5,nU,-0) 
»-Q(1.5,f1U,-l) 
• -0(i.s,nu,-2i 
•<-PSIB(l,5,nU) 

Figure 2.17. Contributions of elementary solutions q (x,y) to . (x y) 
Benchmark //3A " V'B^x,y; 

(a) n traverse at x = .5, (b) y traverse at x = 1.5 
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BENCHMARK 3A EIGENMODES A(N)xQ(X,MU,N) AT X-.5 MU(.9,1) 

(a) 

LEGEND 
o-0(.5,nu.0*) 
o-o(.s,nu,-»o) 
*-ot,5,nu.ii 
••-ot.s,nu,2) 
x-0t.5,nU,D-) 
• -oi.5,nu,-0) 
»-0t.5,t1U,-l) 
• -Ol.5,MU,-2) 
•«-PSIBt.5,nU) 

BENCHMARK 3A EIGENMODES A(N)MQ(X,MU,N) AT X-.5 MU(.99,i: 

(b) 

LEGEND 
o-0(.S,nU,0*) 
o-0t.S,flU,+0) 
» -0 ( .5 ,nu . i ) 
• -0( .5,nu,2) 
x-0(.5,nu,o-) 
• -oi.5,nu,-o) 
»-0t .5 ,HU, - l ) 
• -ot.5,nu,-2) 
K-PSIBt.S.tlU) 

Figure 2.18. Detailed enlargement of elementary 
solution (Contributions to Benchmark #3A 
(a) .9 < y < 1, (b)-.99 < y < 1 
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difference in behaviour of a2q2(x.y) in BP3 and BP3A. taking into account 

the different scaling factors a^, indicates that as a is decreased the 

minimum point of q (x.y) is continuously decreased and moves closer to 

y = 1. The difference in scaling factor a^ is expected because of the 

difference in q (x.y) at the least squares node y = 1. 

Overall the effects of the a parameter do not appear to have major 

significance. However, should an improved discretization scheme manifest 

itself, then a must be reconsidered. 

A set of twenty problems where the space/angle mesh refinements are 

varied as in BPl are solved via the DBl, DB3 and DGF methods. The maxi

mum absolute scalar flux error || ^^A with associated sign is tabulated in 

Table 2.7 for each of the twenty problems. The overall error performance 

for the three methods shows that the DB3 and DGF methods have errors 

about two to three times smaller than the DBl method. The location of 

the maximum error is usually the same for all methods and varies depend

ing upon the mesh discretization. As the number of spatial mesh points 

are increased the maximum absolute error shifts towards the boundary at 

X = .5. This is partly due to the fact that the angular flux is a maxi

mum at X = .5 and partly due to the discontinuity at y = 0 and x = .5. 

Figure 2.19 illustrates the scalar flux error for eight of the 

twenty problems. The problems are chosen to illustrate the dependence 

of the error on spatial and angular refinements. Four problems have 

I = 16 mesh intervals with the number of angles varied from 2,4,8 to 16 

and five problems have M = 16 with the number of spatial intervals varied 

from 1,2,4.8 to 16. For M = 2 and M = 4 or I = 1, 2 and 4 (i.e. dis

cretizations with very large or very small space angle mesh ratios) we 

observe large errors. 

Table 2.8 tabulates the maximum absolute angular flux error 11 <̂  11 

with associated algebraic sign for the three methods. The same relative 

behaviour of the methods is observed as described in the scalar flux 

analysis. Error convergence is obtained for J = 2 and J = 4 for the DB3 

method. The angular location of the error consistently is located at the 

M coordinates of minimum absolute value (i.e. closest to y = 0) where t'.ie 
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Table 2.7. Maximum absolute signed scalar flux error ±|Iig||„ tabulated 
for twenty space/angle discretization sets of Benchmark #3 
for DBl, DB3 and DGF Methods 

DEAPkC OS/76 11I>I3,1 Din 1 CELL M,A. X(0,.r>) S=1, X ( .5 ,1 .51 S»0, HU0=1.D5 

KAX. ABS. SCALtR FLUX ERCOR AKD LOCAllO.'l (CLOUAL) 

I : MO. OF xnEsii I N T E R V A L S J : VO. O F nu P O I N T S 

(a) DBl 

ERKOK 
EX»CT 
X LOC 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

J 
I 

1 

2 

1 

e 

16 

2 

- a . 3 2 D - 0 2 
0 . 7 3 3 
0 . 5 0 0 

- 6 . 0 6 D - 0 2 
0 . 3 0 1 
1 . 0 0 0 

- 9 . 0 3 n - 0 2 
0 . 4 3 9 
0 . 7 5 0 

- 1 . 0 1 D - 0 1 
0 . 5 i | 5 
0 . 6 2 5 

- 1 . 0 3 0 0 1 
C-.II87 
0 . 6 B 8 

II 

1 . 2 0 D - O 1 
0 . 135 
1 . 5 0 0 

6 . 3 2 0 - 0 2 
0 . 3 0 1 
1 . 0 0 0 

2 . 7 U D - 0 2 
0 . 3 0 1 
1 . 0 0 0 

2 . 1 5 D - 0 2 
0 . 3 0 1 
1 . 0 0 0 

2 . 0 1 D - 0 2 
0 . 3 0 1 
1 . 0 0 0 

e 

1 . 1 9 0 - 0 1 
0 . 135 
1 . 500 

6 . 5 2 D - 0 2 
0 . 3 0 1 
1 . 0 0 0 

3 . 5 1 D - 0 2 
0 . 0 3 9 
0 , 7 5 0 

1 , 5 7 0 - 0 2 
0 . 5 0 5 
0 . 6 2 5 

7 . 0 7 D - 0 3 
0 . 5 0 5 
0 . 6 2 5 

16 

1 . 1 7 0 - 0 1 
0 . 1 3 5 
1 . 5 0 0 

6 . 2 3 U - 0 2 
0 . 3 0 1 
1 . 0 0 0 

3 . 2 0 0 - 0 2 
0 . 0 3 9 
0 . 7 5 0 

1 . 6 1 D - 0 2 
0 . 5 0 5 
0 . 6 2 S 

7 . 1 5 D - 0 3 
0 . 6 1 8 
0 . 5 6 3 

BEAPAC 05/76 B P I 3 . 2 DB3 1 CELL H.A. X ( 0 , . S ) S = 1 , X ( . 5 , 1 . S ) S = 0 , NCO-l.OS 

BAX. ABS. SCALAR FLUX ERROR AND LOCATION (CLOBAL) 

(b) DB3 

I: NO. OF XBESU INTEBVALS 

EEROS 
EXACT 
X LOC 

ERROR 
EIACT 
X LOC 

EliliOB 
EXACT 
I LOC 

ERROR 
EXACT 
X LCC 

ESROB 
EXACT 
X LOC 

OF BO POINTS 

3 
I 

1 

2 

11 

B 

16 

2 

-3 .97U-02 
0.733 
0.500 

-7 .10D-02 
O.301 
1.000 

-1.C0D-01 
0.039 
0.750 

-1 .01D-01 
0.505 
0.625 

-1 .03D-01 
0.087 
0.688 

ir 

1. 20U-02 
0.733 
0.500 

1.73D-02 
0.301 
1.000 

1.951-02 
0.301 
l.OOO 

1.96D-02 
0.301 
1.000 

1.96D-02 
0.301 
l.OOO 

8 

-O.OOu-02 
0.135 
1.500 

-1 ,09D-02 
0.301 
1.000 

2.59D-03 
0.733 
0.500 

5 .020-03 
0.505 
0.625 

5.020-03 
0.505 
0.625 

16 

-0 .21U-02 
0.135 
1.500 

-2 .130-02 
0.301 
1.000 

-1 .170 -02 
0.039 
0.730 

- 5 . 180-03 
O.505 
0.625 

-1.20D-03 
O.505 
0.625 

BEAPAC 05/76 BPI3 .0 DGF 2 CELL H.A. X ( 0 , . 5 ) 5 = 1 , X ( . 5 , 1 . 5 ) S=0 , t;U0=1.05 

BAX. ABS. SCALAR FLOX ERROR AND LOCATION (GLOBAL) 

I : BO. oP XHESH INTERVALS J : NO. OF BU POINTS 

(c) DGF 

ERROR 
EXACT 
I LOC 

EBPOR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
I LCC 

ERROR 
EXACT 
X I.OC 

I 

1 

2 

0 

8 

16 

2 

- 5 . ? 1 D - 0 2 
. 0 . 7 3 3 

O.SOO 

- 5 . 8 0 0 - 0 2 
0 . 3 0 1 
1 . 0 0 0 

- 9 . 6 5 0 - 0 2 
O . O J I 
0 . 750 

- 1 . C 0 D - 0 1 
O .505 
0 . 6 / 5 

- 1 . 0 3 0 - 0 1 
0 . 0 9 7 
O.tUG 

0 

.•>.C7D-0 2 
0 . 1 3 5 
1 . 500 

3 . 3 3 0 - 0 2 
0 , 3 0 1 
1 , 0 0 0 

2 . 0 0 D - 0 2 
0 . 2 0 9 
1 . 250 

1 . KOh-02 
0 . 2 5 1 
1 . 125 

1 , 9 5 0 - 0 2 
0 . 3 1 0 
0 . 1311 

8 

2 . 5 5 0 - 0 2 
O . T i 5 
1 . 5 0 0 

3 . 0 3 D - 0 2 
0 . 3 0 1 
1 . 0 0 0 

1 . 5 3 0 - 0 2 
0 . 0 19 
0 . 7 5 0 

6 . 2 0 0 - 0 3 
0 . 5 0 5 
0 . 6 2 5 

5 . n o » - 0 3 
0.0117 
0 . 6 U ' I 

16 

- 2 . 7 0 D - 0 2 
0 . 7 3 3 
0 . 5 0 0 

2 . 7 5 D - 0 2 
0 . 3 0 1 
1 , 0 0 0 

1 . 10! ) - l l2 
O.O.TI 
0 . 7 5 0 

0 . 3 9 1 ) - 0 3 
0 . 5 0 5 
0 . 6 2 5 

1 . 5 6 0 - 0 3 
0 . 6 i n 
0 . 5 6 3 
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BENCJtIMARK 3.1 SCALAR ELUX ERROR PHIE(X) FOR 1-16 OR M-16 

(a) DBl 

• -PHIEIX) 4,16 
»-PHIE[X) 8,16 
• -PHIEtX) 16,16 

BENCHMflRK 3.2 
8 

SCALAR FLUX ERROR PHIEtX) FOR 1-16 OR M-16 

(b) DB3 

BENCHMARK 3.4 SCALAR FLUX ERROR PHIE(X) FOR 1-16 OR M-16 

(c) DGF 

Figure 2.19. Scalar flux error ^^(x) for DBl, DB3 and DGF methods f 
eight selected discretizations of Benchmark //3 
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Table 2 . 8 . Maximum abso lu t e signed angular f lux e r r o r ± | | ^ | | for 
twenty space/angle d i s c r e t i z a t i o n s e t s of Benchmark #3 
for DBl, DB3 and DGF methods 

br.kPtC OS/76 p p f 3 . i TBI 1 c r i L t f . i . 1 ( 0 , . ^ ) < : - i , t i . i , \ . b ) s>^o, u u o - i . o % 

H i X . J.B5. VtCTOR FLUX ERROR IMO LOCJtTIOW (ClObkL) 

HO. o r XHCSII It lTlRVALS J : VO. OF HD rOIVTS 

(a) DBl 

ERROA 
FXI.CT 
X LOC 
RUIOC 

CRROh 
EX*CT 
I LOC 
MULOC 

IKKDR 
EXACT 
X LCC 
RULOC 

EKROF 
ClftCT 
1 LOC 
BOLOC 

EREOR 
EXACT 
Z LOC 
BOLOC 

a 
X 

1 

2 

4 

0 

16 

2 

3 . 3 3 ? - 0 2 
0 . 1 U 7 
1.50C 
0. -̂ oo 

- 1 . 0 2 t ! - 0 2 
0 . 0 9 3 
0 . 5 0 0 

-O.DOO 

- 1 . 7 6 1 1 - 0 2 
0 . 0 9 3 
0 . 0 0 0 

- 0 . 5 0 0 

- 1 . 7 5 P - 0 2 
0 . 0 9 3 
0 . 5 0 0 

- 0 . 5 0 0 

-1 .711 D-02 
0 . 0 9 3 
0 . 5 0 0 

- 0 . 5 0 0 

II 

2.190-01 
0 . 0 5 0 
1.5D0 
0 . 2 1 1 

e . 7 2 D - 0 2 
0 . 160 
1.0 JO 
0 . 3 1 1 

2 . 1 9 0 - 0 2 
0 . 3 ) 7 
0 . 7 5 0 
0 . 211 

6 . 7 a D - 0 3 
0 . IGO 
1 . 0 0 0 
0 . 2 1 1 

« . 6 9 0 - 0 3 
0 . 105 
1 . 1 6 0 
0 . 2 1 1 

0 

a . 1 6 D - 0 1 
o.oun 
l . i O O 
0 . 0 6 0 

3 . 0 0 D - 0 1 
0 . 0 ( i ( . 
1 . 000 
0 . 0 6 9 

- . . 6 1 D - 0 1 
0 . 1112 
0 . 7 5 0 
0 . 0 6 9 

5 .6110 -02 
0 . 2 q 7 
0 . 6 2 5 
0 . 0 6 9 

1 . 3 1 D - 0 2 
0 . 3 9 3 
0 . 5 6 3 
0 . 0 6 9 

16 

5 . 0 3 0 - 3 1 
0 , 0 1 b 
1 . 5 0 0 
0 . 0 2 0 

4 . 5 1 [ > ' 0 1 
0 . 0 7 9 
1.0C0 
0 . 0 2 0 

3 . 7 6 0 - 0 1 
0 . 116 
0 . 7 5 0 
0 . 0 2 0 

2 . C 7 D - 0 1 
0 . 116 
0 . 6 2 5 
0 . 0 2 0 

1 . 3 5 D - 0 1 
O. IAO 
0 . 5 6 3 
0 . 0 2 0 

BEiPAC 05/76 B t > t 3 . 2 D S 3 1 CELL E . A . X ( 0 , . 5 ) S » 1 , Z ( . 5 , 1 . 5 ] S-'O, I U O B I . O S 

BAX. l a r . TECTOfi FL^X EELOB AKH L O C A T I O V (CLObAL) 

(b) DB3 

X : f O . 

rEr>0E 
EXACT 
J LCC 
CDLOC 

ERKOP 
EXACT 
X LOC 
E0"-OC 

BRFOh 
EXACT 
X LOC 
BOLOC 

ERROR 
EXACT 
X LOC 
BOLOC 

ESttOR 
I X S C t 
X Lor 
BOIOC 

o r XRESH IKTEBVAL5 

I 

1 

2 

t 

6 

16 

2 

- 1 . 7 3 D - 0 2 
0 . 0 9 3 
0 . 5 0 0 

- 0 . 5 0 0 

- 1 . 7 1 I D - 0 2 
0 . 0 9 3 
0 . 5 0 0 

- 0 . 5 C 0 

- 1 . 7 1 D - 0 2 
0 . 0 9 3 
0 . 5 0 0 

- 0 . 5 0 0 

- 1 . 7 « t - 0 2 
0 . 0 9 3 
0 . 5 0 0 

- 0 . 5 0 0 

- 1 . 7 t l I ! - 0 2 
0 . 0 7 3 
0.5C.P 

- 0 . 5 0 0 

J : 1 0 . 

C 

- 3 . 3 0 0 - 0 2 
0 . 0 5 8 
1 . 50i.> 
0 . 2 1 1 

1 . 0 1 D - 0 3 
O.05G 
1 . 0 0 0 

- 0 . 2 1 1 

a . i o i ) ' 0 3 

o.cou 
0 . 7 5 0 

- 0 . 2 1 1 

« . 1130-03 
0 . 0 6 9 
0 . 6 7 5 

- 0 . 2 1 1 

4 .Q3 !> -03 
0 . 0 & 9 
0 . 6 7 5 

- 0 . 2 1 1 

OE BO P O I I : T S 

9 

- 2 . 2 S D - 0 1 
O.OttO 
1 . 5 0 0 
0 . 0 6 9 

- 9 . 5 2 0 - 0 2 
0 . 0 8 6 
1 . 0 0 0 
0 . 0 6 9 

- 2 . 0 2 0 - 0 2 
0 . 142 
0 . 7 5 0 
0 . 0 6 9 

- 1 . 7 7 l ) - 0 3 
0 . 2 4 7 
0 . 6 2 5 
0 . 0 6 9 

1 . 2 7 n - 0 3 
0 . 175 
0 . 6 2 5 

- D . 0 C 9 

16 

- « . 1 3 0 - 0 1 
0 . 0 3 6 

i.5on 
0.D2O 

- 3 . 2 1 0 - 0 1 
0 . 0 7 9 
1 . 0 0 0 
0 . 0 3 0 

- 1 . 9 8 D - 0 1 
0 . 1 1 6 
0 . 7 5 0 
0 . 0 2 0 

- 7 . 7 6 0 - 0 2 
0 . 1 t 6 
0 . 6 2 5 
0 . 0 2 0 

- 1 . 5 6 D - 0 2 

0. ins 
0 . 5 6 3 
0 . 0 2 0 

BVti.H OCr 2 CELL tf. A. X ( 0 , . 5 ) S - 1 , I ( . 5 « 1 . 5 ) S^O, B U 0 = 1 . 0 5 

(c) DGF 

BAX. ABS. VECTOR FLOX KRROR AND LOCJ^TJUU (ClODAL) 

Z: VO. Of XhESII IHTZRrALS J : HO. OE HD POlUtii 

EOROR 
T.r\ct 
X LOC. 
r.ui.oc 

EtPOB 
txMir 
X IOC 
RHLOC 

Enron 
IXACT 
X LOC 
BULOC 

ent ioR 
EIUCT 
X IOC 
BULOC 

EKROh 
KKXCT 
X LOC 
BI ' IOC 

I 

1 

? 

1 

P 

16 

2 

- 3 . 5 1 5 - 0 2 
0 . 0 9 3 
0 . 5 0 0 

- 0 . 5 C O 

- j . n r - 12 
O.Qli 
0 . 5 P 0 

- 0 . 5 0 0 

- i . e i u - o ; 
0 . 0 9 3 
O.' jPC 

- 0 . 50(1 

- 1 . 7 i > t i - 0 2 
C .09T 
0 . 5 0 0 

- f i . 5 0 0 

- l . " : - 0 - 0 2 
0 . 0 ' J 3 

0 . 5 0 0 
- 0 . 5 0 0 

« 

6 . 5 1 0 - 0 2 
0 . 0 5 6 
1 . 500 
0 . 2 1 1 

i . B ? n - ' > ? 
0 . ISO 
I .OOt l 
0 . 2 1 i 

7 . 1 ' S 0 - 0 3 
O.Gi l ' ; 
0 . 7 5 0 

- 0 . 2 1 1 

5 . 1 0 n - 0 3 
o.nct 
o . i i v : . 

- 0 . 2 1 1 

*.«,'>n-o3 
0 . 0 7 6 
I ' . U U 

- 0 . 2 1 1 

0 

) . B 5 n - 0 1 
O.OitO 
1 .500 
0,06<« 

e . * . 7n - i >2 
0 .60 '< 
l .ODO 
C . 0 6 9 

3 .G9D-C2 
0 . 14? 
0 . 7 5 0 
0 . 0 6 ? 

7 . 5 0 ( > - 0 3 
O.S ' i7 
0 .6 ;>5 
0 . 0 6 9 

1 . 7 7 f i - 0 « 
0 , IHO 
0 . 5 6 3 

- 0 . 0 6 9 

16 

2 . 3 f D - 0 1 
0 . 0 3 6 
1 . 5 0 0 
O.Ol ' i ) 

1 . T . 0 - 0 1 
0 . 0 7 0 
1 .000 
0 . 0 JO 

i.of.n-01 
0. no 
C . 7 5 0 
0 . 0 2 0 

V . i ( . n - C 2 
0 . I ' l l . 

o.t:"i 
O.O^O 

2 . 7 ( , n - 0 ? 
U. 180 
0 . 5«. 3 
0 . 0 2 0 
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effects of the flux discontinuity are greatest. The spatial location of 

the error is usually the interior mesh point closest to the left boundary. 

Figures 2.20, 2.21 and 2.22 illustrate the angular flux errors along p at 

X = .5, 1. and 1.5 respectively for the three methods. The same eight 

problems are considered as in the scalar flux analysis. The error sig

nificantly improves as the spatial mesh size decreases for M = 16. 

Considering this result and the results of problems BPl and BP2, we note 

that for space/angle mesh discretization ratios outside of an optimal 

band, the errors increase. 

Tables 2.9 and 2.10 tabulate the average absolute scalar flux error 

and the relative sum errors of the pointwise scalar flux error >^ 

respectively. The average error decreases monotonically for all methods 

for J = 8 and 16, but for J = 2 and J = 4 the error decreases, reaches a 

minimum and then increases. A similar error behaviour is observed in 

Table 2.10. For equivalent discretizations the DB3 method is more accurate 

than the DGF method by about a factor of two. 
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BENCHMARK 3.1 ERROR TRAVERSES PSIE(.5,riU) FOR 1-16 OR M-16 

(a) DBl 

BENCHMARK 3.2 ERROR TRAVERSES PSIE(.5,MU3 FOR 1-16 OR M-16 

(b) DB3 

i ^ * -

- -0 -0-8 

o-psiE(.s,nu)ie,2 
o-PSIEt.5,nU)lS,4 
*-PSIEl.S,nU)16,8 
+ -PSIEl.5,nU)l,16 
x-PSIE(.S,MU)2,16 
• -PSIEl.S,MU)4,16 
»-PSIEt.S,HU)8,16 
• -PSIEt.S,HU)16,16 

-•et-
0-6 1 0 

BENCHMARK 3.4 ERROR TRAVERSES PSIE(.S,MU) FOR 1-16 OR M-16 

(c) DGF 

Figure 2.20. Angular flux error traverses i|̂ (.5,p) for DBl, DB3 and DGF 
methods for eight selected discretizations of Benchmark #3 
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BENCHMARK 3.1 ERROR TRAVERSE PSIE(1,MU) FOR 1-16 OR M-J6 

(a) DBl 

• 0 

LEGEND 
o - P S l E ( l , n U l l 6 , 2 
o -PSIE I l ,MU)16 ,1 
»-PSIE( l ,MU)16,8 
+ -PSIE{ I ,nU)2 ,16 
x - P S I E ( l , n U ) 4 , 1 6 
• -PS IE ( l , nU)8 , lG 
» -PSIE( l ,nU)16 ,16 

-0-8 -0'6 -DM 

li 

o" 

n 

n 
o* 

u 7 

, ~4 
'"•' iff T

-0
-

r% •0-

n 

0-2 0 * " D-6 0 - 8 1 

BENCHMARK 3.2 

(b) DB3 

ERROR TRAVERSE PSIEd^MU) FOR 1-16 OR M-16 

LEGEND 

o-PSIEIl,nU)lG,2 
o-PSIEIl,nU)16,4 
A-PSIEIl,t1U)16,8 
•t-PSIE(l,nU12,16 
x-PSIE(l,MU)4, 16 
« -PSIE(l,m)8, 16 
v-PSIEn,MU)16, lb 

BENCHMARK 3.4 ERROR TRAVERSE PSIEd.MU) FOR 1-16 OR M-16 

(c) DGF 

LEGEND 
D - P S I E l l , f i u i l 6 , 2 
o - P S l E ( l , m i l 6 , 4 
4 - P S i [ . n , m i i 6 , 8 
+ -PS IE l l , nU)2 ,16 
x - P S I E l l , n U H , l G 
«-PSiEn,nu)8,i6 
v-p:.;E(i,m)iG, IS 

-Ccp 

Figure 2.21. Angular flux error traverses tjj (l,y). for DBl, DB3 and DGF 
methods for eight selected discretizations of Benchmark #3 
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BENCHMARK ERROR TRflVERSE PSIE(1.5,MU) FOR 1-16 OR M-16 

( a ) DBl 

BENCHMARK 3.2 
« • am 

ERROR TRAVERSE PSIE(1.5,MU1 FOR 1-16 OR M-16 

(b ) DB3 

o-psiEti: 
o-PSIEll 
*-PSIEll 
+ -PSIEtl 
>c-PSIEtl 
• -PSIECl 
• -PSIE11 
• -PSIE11 

5,nU)16,2 
S,riUJ16,4 
,5,nU)16,S 

,s,nun,i6 
,5,nU)2.16 
.5,nUJ4,16 
.5,t1U)8,ie 

-I-O 
I 

-0.6 

BENCHMARK 3.4 ERROR TRAVERSJ PSIEC1.5,MU) FOR 1-16 OR M-16 

( c ) DGF 

o-psiEtl, 
o-PSIE(l, 
• -PSIEd, 
• -PSIEd, 
"-PSIEd, 
• -PSIEd. 
»-PSIEd, 
• -PSIEd. 

S,nU)16,2 
5,nU)16,4 

s,nu)i,i6 
5,nU]2.16 
5, nun, 18 
5,tlU)8,lG 
5, nU) 16,16 

I * • fM 
0 -0-8 

-*—*—o ^ »• 
-0.8 -0»« 

Tl^t-««l^O-~ 
i*iS-

Flgure 2 .22. Angular flux error traverses ij;g(1.5,p) for DBl, DB3 and DGF 

methods for eight selected discretizations of Benchmark #3 
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Table 2.9. Average absolute scalar flux error for DBl, DBS and DGF 
methods for twenty discretization sets of Benchmark //3 

BEHPIC 0 5 / 7 6 BP»3. 1 DBl 1 CELL K.k. 1 ( 0 , . 5 ) S - 1 , Z ( . S , 1 . 5 ) S -O, MOO-I.OS 

IVG. ABS. SCALAR FLDX ER30B (GLOBAL) 

I : HO. OF XHFSH INTEBTALS J: HO. OF HD POIBTS 

J . 2 <« 8 16 

EBBOB 1 . 3 . 2 2 D - 0 2 6 . 2 6 D - 0 2 6 . 0 8 D - 0 2 6 . 1 8 0 - 0 2 

EREOR 2 . 3 . 8 5 D - 0 2 2 . 9 9 D - 0 2 2 . 8 9 D - 0 2 2 . 7 8 D - 0 2 

ERROR a . 5 . 3 3 D - 0 2 1 . 8 3 D - 0 2 9 . 0 8 D - 0 3 . 1 . 1 7 D - 0 2 

EREOR 8 . 6 . 0 5 D - 0 2 1 . a 2 D - 0 2 . t . 0 6 0 - 0 3 3 . 2 8 0 - 0 3 

ERROR 16 . 6 . 3 7 0 - 0 2 . 1 . 3 8 0 - 0 2 2 . 5 6 0 - 0 3 8 . 7 a o - 0 « 

BEAPAC 0 5 / 7 6 B P * 3 . 2 DBS 1 CELL H.A. X ( 0 , . 5 ) S'^, Z ( . S , 1 . S ) S = 0 , 8 0 0 = 1 . 0 5 

ATG. ABS. SCALAB FLOI ERBOB (GLOBAL) 

I : BO. OF XHESH IKTERVALS J : HO. OF HO POINTS 

ERBOB 

BBROB 

ERROR 

ERBOB 

ERBOB 

J 
I 

1 

2 

a 

8 

16 

BEAPAC 05/76 

• 

• 

• 

• 

• 

• 

2 

3.21(0-02 

U.a9D-02 

S.510-02 

6.090-02 

6.380-02 

BPt3.<l 

a 

1.000-02 

1.22D-02 

1.320-02 

1.320-02 

1.360-02 

06F 2 CELL H. 

8 

2.300-02 

6.570-03 

1.170-03 

2.060-03 

2.030-03 

.A. X(0,.5) 

16 

2.220-02 

1.080-02 

3.860-03 

1.220-03 

7.«5D-0« 

S»1, X(.5,1 

ATG. ABS. SCALAB FLOX ERROR (GLOBAL) 

I : NO. OF XHESB INTERVALS J : HO. OF BO POINTS 

J . 2 4 8 16 
I . 

ERROR 1 . 5.080-02 2.210-02 2.a7D-02 2.560-02 

ERROR 2 . «.280-02 1.700-02 1.280-02 1.350-02 

ERROR « . 5.a3D-02 1.H30-02 «.«10-03 «.630-03 

ER80B 8 . 6.070-02 1.320-02 2.610-03 1.a8D-03 

ERROR 16 . 6.370-02 1.360-02 2.150-03 6.80O-0* 
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Table 2.10. Relative sum error of pointwise scalar flux for 
DBl, DB3 and DGF methods for twenty discretization sets 
of Benchmark #3 

BBAPAC 0 5 / 7 6 B P i 3 . 1 DBl 1 CELL M.A. X ( 0 , . 5 ) S = 1 , X ( . 5 , 1 . 5 ) S = 0 , N 0 0 = 1 . 0 5 

REL. ABS. SCALAR FLOX ERBOB (GLOBAL) 

I : HO. OF XBESH INTERVALS J : NO. OF HU POINTS 

J '. 2 4 8 16 
I . 

ERROR 1 '. 7.ft1D-02 I.KUD-OI 1.400-01 1.42D-01 

EREOR 2 . 9.890-02 7.680-02 7.430-02 7.140-02 

ERROR 4 . 1.470-01 5.040-02 2.500-02 3.210-02 

ERROR 8 .* 1.730-01 4.050-02 1.160-02 9.390-03 

ERROR 16 . 1.860-01 4.040-02 7.460-03 2.550-03 

BEAPAC 05/76 BP#3.2 0B3 1 CELL H.A. X(0,.5) S=1, Z(.5,1.5) S=0, Nn0=1.05 

BEL. ABS. SCALAB FLOX ERBOR (GLOBAL) 

I: NO. OF XHESH INTERVALS J: NO. OF HO POINTS 

3 . 2 4 8 16 
I 

ERROR 1 '. 7.460-02 2.310-02 5.29D-02 5.120-02 

ERROR 2 . 1.150-01 3.120-02 1.690-02 2.770-02 

EBEOB 4 . 1.520-01 3.63D-02 3.230-03 1.060-02 

EHROB 8 *. 1.740-01 3.790-02 5.900-03 3.500-03 

iBROB 16 *. 1.860-01 3.960-02 5.930-03 2.170-03 

BEAPAC 05/76 BP#3.4 OGP 2 CELL H.A. X(0,.S) S=1, I(.5,1.5) S=0, NDO=1.05 

BEL. ABS. SCALAB FLOX EBBOB (GLOBAL) 

I: NO. OF XHESH INTEBVALS J: NO. OF BO POINTS 

EBBOB 

EBROB 

ERROR 

EBROB 

EBBOB 

J 
I 

1 

2 

4 

8 

16 

• 

, 

• 

. 

. 

, 

2 

1.170-01 

1.100-01 

1.500-01 

1.740-01 

1.860-01 

4 

5.090-02 

4.370-02 

3.920-02 

3.790-02 

3.980-02 

8 

5.680-02 

3.280-02 

1.210-02 

7.54D-03 

6.290-03 

16 

5.900-02 

3.480-02 

1.270-02 

4.240-03 

1.98D-03 
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2.2.4 Benchmark Problem //4, a two cell least squares modes analysis 

The reference problem configuration for BP4 is given in section 2.2.3 

and the reference solution i>^U,v) ±B displayed in Fig. 2.9. In this 

problem we generate a benchmark solution ^g(x,y) in two cells as described 

in section 1.1.6. Figure 2.23 Illustrates *g(x,M) for x traverses and p 

traverses in the usual fashion. At the interface x = .5 there is a flux 

discontinuity for y = 0 due to the source in cell I. 

Comparisons of scalar flux *^(x) and <̂ g(x) , and angular flux 4.^ix,v) 

and i> (x,ii) are illustrated in Fig. 2.24a,b respectively. The maximum 

relative scalar flux differences are about 4% in cell I. The angular 

flux differences in cell I are about .15 (arbitrary units) at the inter

face X = .5 for M £ 0 (in particular near u = -.9). The difficulty in 

approximating the angular flux in cell I is not evident, but may be 

related to the reflecting boundary condition at x = 0. 

The benchmark solution K(x,y) in cell II is obtained exactly as in 

BP3 but is then modified by a regionwise constant angular source Q(IJ) 

which is required to satisfy the interface condition of flux continuity. 

Figure (2.25b) illustrates the constant source S = .5 in cell I and the 

interface condition source Q(y) in cell II. The angular flux difference 

of ^ (.5,y) and IJJ (.5,M) in cell I is the dominant factor in the shape 
B R 

of Q(y) in cell II. 

Again we recall our original purpose in this work is to create exact 

benchmark problems which can be related to physical problems. We claim 

BP4 is such a problem and as such can be used to analyze the error per

formance of numerical methods with particular interest in observing the 

error at the interface x = .5. 

First we examine t|i (x,y) in more detail. Figure 2.25a illustrates 

the transient combining coefficients A(v ) and asymptotic coefficients 

aQ± for cells I and II. In cell II the A(v) are precisely the same as in 

BP3. The coefficients a in cell I can be better understood by analyzing 

Fig. 2.26a which displays the contribution of the a q to tj' (x,y) at the 
n n D 

cell boundary x = 0. The negative contributions of the a q are added to 
n n 

the particular solution corresponding to the source in each cell. 
Sixteen different space/angle mesh discretizations for BPA were 
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BENCHMARK 4 ANG FLUX PSIBtX,MUl MU-+-(1,.5,.1,0) 

(a) 

LEGEND 
o-PSIB(X,l) 
o-PSIB(X,.5) 
*-PSI8(X,.l) 
• -PSIB(X,+0) 
x-PSIBlX,-0) 
• -PS1B(X,-.1) 
»-PSIB(X,-.5) 
• -PSIBtX,-!) 

BENCHMARK 4 ANG FLUX PSIBtX,MU) X-0, .25, .5,.6,1.,1.5 

(b) 

LEGEND 
o-psiB(0,m) 
o-PSIBt.2S,MU) 
*-PSIBt.5,nU) 
• -PSIB(.6,nU) 
>c-PSIBd.,MU) 
• -psiBd.s.nu) 

Figure 2 .23 . Angular flux traverses for Benchmark #4 
(a) Traverse along x for fixed y 
(b) Traverse along y for fixed x 
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BENCHmRK 4 SCflLflR FLUX PHIR(X) VS. PHIB(X) 

(a) 

-I 1 1 I T - T-

X 

LEGEND 

I I I I I I I 1 1 1 I ' I ' 

0-0 0-1 0-2 0-3 D•^ 0-S 0-6 0-7 0-8 0-9 1-0 1-1 1-2 1-3 1-4 1-E 

D-PHIR(X) 
o-PHIB(X) 

BENCHMflRK 4 PSIR(X,MU) VS. PSIB(X,nU] 

(b) 

D-FSIRCO.nU) 
o-PSIR(.5,MU) 

+ -psiB(o,nu) 
x-PSIB(.S,IVJ) 
«-PSiBti.;s,nu] 

Figure 2.24. Comparison of DB3 reference and benchmark solutions 
for Benchmark #4 

'a. Scalar flux <p^(x) vs. <^^ix) 
b. Angular flux Vj^(x,y) vs. <Jjg(x,y) at x=0, x=.5 and x=l. 
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BENCHMARK 4 fl(NU) FOR CELLS I ̂  II FOR N-3,ALPHA-.18 

(a) 

NUO- 1-0500 
NUO- 1-0500 

LEGEND 
o-fl(NUJ CELL I flO+—0-2634 flO 0-4142 
*-f l (NU) CELL I I fl0+- 0-2556 flO 0-0093 

BENCHMARK 4 REGIONWISE CONSTANT SOURCES SRCOtMU) I ;̂  II 
in 

(b) 

LEGEND 
Q-SRCQtnU) I 
o-SRCQ(m) II 

Figure 2.25. (a) Combining coefficients A(v) and a»± from least 
squares modes analysis 

(b) Regionwise constant sources in Cell I and Cell II 
for Benchmark #4 
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BENCHMRK 4 EIGENMODES A(N) xO(X,MU, N) TRAVERSE AT X-0 

BENCHMARK 

BENCHMARK 4 EIGENMODES A(N)xO(X,MU,N) TRAVERSE AT X - 1 . 5 

Figure 2.26. Contr ibut ions of elementary so lu t ions a q (x ,p) to 
i|^g(x,y) in Benchmark //4 for y t r a v e r s e a t (a) x=0, 
(h.) x= .5 , (c)" x=1.5 
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solved. The spatial mesh discretization is equally spaced in the two 

cells. The angular discretization is the same as in the previous prob

lems. The absolute maximum scalar flux error ||4x.|loo with associated sign 

is tabulated in Table 2.11 for the three methods of the previous sections. 

For equivalent mesh discretizations, omitting the cases when 1 = 3 , the 

DBl and DGF methods have comparable accuracy. For I = 3 or 6 and J = 8 

or 16 the maximum error in DBl and DGF is about three or four times the 

error of DB3. Figure 2.27 illustrates this clearly for seven selected 

discretizations. Also apparent is a significant error fluctuation about 

the interface at x = .5 for low angular approximations. 

The optimum space/angle mesh ratio phenomenon is particularly notice

able for DBl and DGF where the combination (I,M) = (3,16) has an error 

comparable to (I,M) = (24,4). As the mesh is refined for M = 16 the error 

magnitude oscillates about zero with the location of the maximum error 

approaching the interface x = .5. 

The maximum absolute angular flux error lU-ll with associated alge-
" E" oo 

braic sign is tabulated in Table 2.12. The maximum error is located at 

the y coordinates with smallest absolute value for all methods. For DBl 

it is always located in cell I. For DGF it is located at the cell inter

face X = .5 for all but two problems (J = 4). For DB3 it is usually in 

cell I with two exceptions when J = 8. 

Figures 2.28, 2.29 and 2.30 illustrate the angular flux error for 

traverses along x = 0, .5, 1.5. For low order spatial discretizations 

the error magnitude is largest in the neighborhood of y = 0. At x = 0 

the error (Fig. 2.28) is symmetric for all three methods due to the re

flecting boundary condition. At the interface x = .5, the error is 

largest near y = 0 for y > 0. In the DGF method the error is antis3nranetric 

about y = 0 . Atx=1.5 the error shape is similar to the shape at x = .5, 

except the antisymmetric behavior is absent from DGF. 

The average absolute scalar flux error and the relative sum error of 

the scalar flux is tabulated in Tables 2.13 and 2.14. A comparison of the 

errors for the three methods for low order spatial discretizations 

(Table 2.13) reveals that the methods (DBl, DB3 and DGF) are ranked in or

der of decreasing error magnitude. As the number of space mesh intervals 

increases, the average error magnitudes for the three methods for equi

valent mesh discretizations become less distinct. 
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Table 2.11. Maximum absolute signed scalar flux error ±| 
for sixteen space/angle discretization sets 
for DBl, DB3 and DGF methods 

I tabulated 
loo 

Benchmark ff4 

BE«r«C 05/76 BPIU.I DD1 2 CtlL n.». 1(0,.5) S-l, I(.5,1.51 S'O, IIUO'1.05 

nAX. ABS. SCALAR FLUX RRROB AKD LOCATION (GLOBAL) 

(a) DBl 

I : DO. o r XHESII IVTERVALS 

ERROR 
EXACT 
X IOC 

ERROR 
EXACT 
I LOC 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

J : KO. OP nu I 'OIHT! 

J 
I 

3 

6 

12 

20 

2 

7 . 6 0 0 - 0 2 
1 . 113 
0 . 0 

1 . 1 5 D - 0 1 
1 .06I I 
0 . 2 5 0 

1 . 2 0 0 - 0 1 
1.0611 
0 . 2 5 0 

1 . 2 1 D - 0 1 
1 . 0 6 1 
0 . 2 5 0 

1 

- 1 . 6 3 0 - 0 1 
1 . 1 1 3 
0 . 0 

- 7 . 6 7 D - 0 2 
1 . 113 
0 . 0 

- 6 . 3 7 D - 0 ? 
0 . 0 0 2 
0 . 6 2 5 

- 7 . 0 5 0 - 0 2 
0 . 6 7 1 
0 . 5 6 3 

8 

- 1 . 6 0 D - 0 1 
1 . 113 
0 . 0 

- 5 . 2 1 0 - 0 2 
1 . 0 6 1 
0 . 2 5 0 

- 2 . 1 5 D - 0 2 
0 . 9 7 6 
0 . 3 7 5 

- 1 . 5 1 0 - 0 2 
0 . 9 7 6 
0 . 3 7 5 

16 

- 1 . 1 7 0 - 0 1 
1 . 1 1 3 
0 . 0 

- 1 . 9 3 0 - 0 2 
1 . 0 0 1 
0 . 250 

1 . 9 7 D - 0 2 
0 . 6 0 2 
0 . 6 2 5 

1 . 1 3 D - 0 2 
0 . 6 7 1 
0 . 5 6 3 

BEAPAC 0 5 / 7 6 B P I 1 . 2 DB3 2 CELL H . A . 1 ( 0 , . 5 ) S . I , I ( . 5 , 1 . 5 ) S - O , « 0 0 = < 1 . 0 S 

BAX. ABS. SCALAR FLDX ERROR A»D LOCATIOK (GLOBAL) 

(b) DB3 

I : HO. o r XHESH JRTERVALS 

ERROR 
EXACT 
X IOC 

rpROR 
EXACT 
I LOC 

ERROR 
EXACT 
I LOC 

ERROR 
EXACT 
I LOC 

J: RO. OF ao poiiiTS 

J 
I 

3 

6 

12 

2 1 

2 

1 . 0 B D - 0 1 
1 . 1 1 3 
0 . 0 

1 . 7 2 0 - 0 1 
1 . 0 6 1 
0 . 2 5 0 

1 . 2 2 0 - 0 1 
1 . 0 6 1 
0 . 2 5 0 

1 . 2 2 D - 0 1 
1 . 0 6 1 
0 . 2 5 0 

I 

- 5 . 1 9 0 - 0 2 
1 . 113 
0 . 0 

- 5 . 7 3 D - 0 2 
1 . 113 
0 . 0 

- 6 . 5 1 D - 0 2 
0 . C 0 2 
0 . 6 2 5 

- 7 . 0 6 0 - 0 2 
0 . 671 
0 , 5 6 3 

8 

2 . 7 2 D - 0 2 
1 . 113 
0 . 0 

- 1 . 2 5 0 - 0 2 
0 . 1 9 6 
0 . 7 5 0 

- 1 . 2 3 0 - 0 2 
0 . 9 7 6 
0 . 3 7 5 

- 1 . 2 7 0 - 0 2 
0 . 9 7 6 
0 . 3 7 5 

16 

1 . 9 6 D - 0 2 
1 . 1 1 3 
0 . 0 

1 . 6 1 D - 0 2 
1 . 0 6 0 
0 . 2 5 0 

7 . 5 0 0 - 0 3 
0 . 9 7 6 
0 . 3 7 5 

3 . 5 9 D - 0 3 
0 . 3 e 6 
0 . 9 3 8 

BEAPAC 0 5 / 7 6 0 P I 1 . 1 DCr 2 CELL B . A . X ( 0 , . 5 ) S - 1 , X ( . 5 , 1 . : i S - O , R U 0 - 1 . O S 

BAX. I B S . SCALAR PLUI ERROR ARC LOCATION (CLOBAL) 

(c ) DGF 

T : HO. 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X I.OC 

FRIIOB 
I >«CT 
I IOC 

ERROR 
EXACT 
I L'lC 

o r X 

3 
I 

3 

6 

12 

21) . 

.ESH IRTERVALS J : HO. 

2 

1 . 3 5 0 - 0 1 
1 . 113 
0 . 0 

l . O O D - O i 
1 . 113 
0 . 0 

1 . 2 > l l - 0 1 
1 . 0 6 1 
0 . 250 

1 . 2 2 0 - 0 1 
1 . 0 6 1 
0 . 2 5 0 

1 

5 . 3 9 0 - 0 2 
0 . 358 
1 . 0 0 0 

- 9 . 2 J D - 0 2 
1 .0 ( .1 
0 . 250 

-6.11711-02 
1 . 107 
0 . 175 

- 6 . 7 6 0 0 2 
0 . 6 7 1 
0 . 5 6 3 

o r nu POIHTS 

e 

8 . 8 3 0 - 0 2 
0 . 3 5 8 
1 . 0 0 0 

- 5 . 3 3 0 - 0 2 
1 . 061 
0 . 2 5 0 

- 3. 1 1 0 - 0 2 
0 . 9 7 6 
0 . 3 7 5 

- 1 .6 ' JD-02 
0 . 9 0 7 
V . I Jli 

1 
0 
1 

- 3 
1 
C 

1 
0 
0 

1 
0 
0 

16 

0 3 r - o i 
351) 
000 

9 6 0 - 0 2 
0>>1 
250 

9 1 D - 0 2 
6 0 } 
625 

. ; i D - 0 2 
671 
561 
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BENQflMARK 4.1 SCALAR FLUX ERROR PHIE(X) FOR 1-24 OR M-16 

(a) DBl 

BENCHMARK 4.2 SCALAR FLUX ERROR PHIEtX) FOR 1-24 OR M-16 

(b) DB3 

o-PHlEtX) 2 i , 2 
o-PHIE(X) 24. •* . 
*-PHIEtX) 24,8 
• -PHIEtX) 3,16 
>c-PHIEtX) 6,16 
• -PHIEtX) 12,16 
»-PHIEtX) 24,16 

M 1*—» S 

BENCJ^MARK 4.4 SCALAR FLUX ERROR PHIE(X) FOR 1-24 OR M-16 

(c) DGF 5 

o-PHIEtX) 24,2 
o-PHIEtX) 24,4 
4-PHIEtX) 24,8 

• — • — • • — • — e — « . - • — « — • -

Figure 2 .27 . Scalar flux error <j)„(x) for DBl, DB3 and DGF methods 
for seven selected discretizations of Benchmark #4 ' ' 
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Table 2.12. Maximum absolute signed angular flux error ±||jilg|„ 
for twenty space/angle discretization sets of 
Benchmark //4 for DBl, DB3 and DGF methods 

• I l f t C 03/T( 1P11.1 DBl I CILl i . t . 1(0,.31 S -1 . I ( . 3 . t . 3 t I 'O . •eO' l . tS 

• I I . t U . KCTOI PLOI IIIOB AID LOCATIOa (ClOlllI 

Xt M . Jl 10. 

« 
or 10 mm 

t i i o i 
t l lCT 
X IOC 
•OlOC 

n i o i 
•IICT 
X IOC 
•sioc 

I I I O I 
l i t e r 
X t o e 
• ( toe 

n m i 
IIICT 
X toe 
n t o c 

1.1TD-02 
0.136 
1.300 
O.SOO 

2.130-02 
O.iTI 
0.300 
0.300 

2.100-02 
0.631 
0.JT3 
0.300 

2.300-02 
0.661 
0.131 
0.300 

-1.130-01 
0.666 
0.0 
0.211 

-3.710-02 
0.331 
0.230 

-0.211 

-1.(20-02 
0.633 
0.123 

-0.111 

•1.32D-02 
0.719 
0.123 
0.211 

-3.310-01 
0.7(1 
0.0 

-0.069 

-1.710-01 
0.715 
0.230 

-0.069 

-6.090-02 
0.610 
0.373 

-0.061 

-1.600-02 
o.ia( 
0.131 

-0.061 

-1.990-01 
0.7(6 
0.0 

-0.020 

-3.910-01 
0.770 
0.230 

-0.020 

-2.720-01 
0.711 
0.375 
-O.OIO 

-1.370.01 
0.702 
0.13( 
-0.020 

tiitic es/7( ar((.2 081 2 CItl l.t. 1(0,.SI S*!, I(.S,1.S) S-O, (00.1.OS 

• IX. I I S . TicToi p t o i i i i o i tn l o e i n o i ( c i o i t t i 

I t 10 . or I U 3 I i s T t i r i i s j2 10. or so POIITS 

« I 16 

XIIOI 
m e t 
X toe 
• ( toe 

i l t O I 
xxict 
X toe 
n t o c 

I I I O I 
I I ICT 
X toe 
•Otoe 

I I I O I 
XIICT 
X toe 
•HOC 

] 

( 

12 

2« 
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0.(71 
0.300 
0.300 

2.170-02 
0.(71 
0.300 
0.300 

2.190-02 
0.631 
0.173 
0.500 

2.320-02 
0.6(1 
O.I3( 
(.300 

•1.(80-02 
0.171 
1.000 
0.211 

-1.180-02 
0.101 
0.300 

-0.211 

-1.110-02 
0.101 
0.300 

-0.211 

-1.190-02 
0.101 
0.300 

-0.211 

i p d . i o«p J e i u , 1. 

(.970-02 
0.713 
0.0 
0.0(9 

-2.310-02 
0.132 
0.750 
0.0(9 

- t . «B -O J 
0.237 
0.(23 
0.069 

-3.110-03 
0.7(3 
0.373 
0.0(9 

. 1 . X|0,.3» 

3.ICS-01 
0.T7O 
0.0 
0.020 

2.020-01 
0.770 
0.230 

-O.020 

7.»TI-«1 
O.TIt 
0.173 

-0.020 

1.(30-02 
0.702 
O.IJ( 

•0.020 

l " 1 . I | . 3 ,1 .3 ) S-O, 100-1.05 

• U . I I S . fICTOI P U I n i O l 110 tOCITIOl (ClOllt) 

l i •o. «r i i i s i t iT i i fus Jl 10. or so toiits 

* '. '1 ( I 

I I I O I 
• X I C 1 
I toe 
• • t o e 

I I I O ^ 
X I I C T 
X t o e 
• • t o e 

I I I O I 
I I I C T 
X t o e 
n t o c 

X ^ I O I 
I I I C T 
X IOC 
• O t o e 

* 

( 

11 
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• 
. . • 
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• . • 
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. . • 
, 
• . • 
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0 . ( 7 1 
0 .300 
0 .300 

2 . U O - 0 2 
0 . ( 7 1 
0 .300 
0 .300 

l . S I D - 0 1 
0 . ( T 1 
0 .300 
0 .300 

2 . 3 1 0 - 0 1 
0 . ( 3 1 
a . 173 
0 .500 

• I . 3 S O - 0 1 
0 . 1 0 1 
0 . 3 0 0 

• 0 . 2 1 1 

• 5 . 7 9 » - 0 3 
0 . 7 I ( 
0 . 2 3 0 
O . l l l 

• 2 . ( 7 1 - 0 1 
0 . 7 1 9 
0 .123 
0 . 1 1 1 

- 1 . 7 9 0 - 0 1 
0 . 101 
0 . 3 0 0 

• 0 . 1 1 1 

- 3 . 0 0 0 - 0 1 
0 . 1 1 1 
0 . 3 0 0 

• 0 . 0 6 * 

• 1 . SIDES'. 
0 . 1 ( 8 
O.SOO 

- 0 . 0 ( 9 

- • . 2 1 0 - 0 2 
s . i i a 
0 . 3 0 0 

- 0 . 0 ( 9 

- 1 . 1 3 0 - 0 3 
O . I K 
0 . 3 0 0 

• 0 . 0 ( 9 

2 . 3 1 B - 0 1 
0 . 7 1 1 
0 . 3 0 0 
0 . 0 2 0 

- 2 . 2 ( 0 - 0 1 
0 . 1 7 ] 
0 . 3 0 0 

• 0 . 0 2 0 

- 1 . 9 1 0 ^ 1 
0 . 1 7 3 
0 . 3 0 0 

- 0 . 0 1 0 

• i . ) i > - a i 
0 . 1 7 1 
0 . 3 0 0 

- 0 . 0 1 0 
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BENCHMARK 4.1 ERROR TRAVERSES PSIE(0,MU) FOR 1-24 OR M-16 
n 

(a) DBl 

> •> -0*= 
-0-8 

o-PSIECO,nU) 24,2 
o-PSIEtO,nU) 24,4 
*-PSIE(0,t1U) 24,8 
+ -PSIEtO,nU) 3,16 
x-PSIEtO,t1U) 6,16 
• -PSIEtO,ttU)12,16 
*-PSIEtO,nU)24,16 

BENCHMARK 4.2 ERROR TRAVERSES PSIE(0,MU) FOR 1-24 OR M-16 

(b) DB3 

o-PSIEtO,HU) 24,2 
o-PSIElO,nU) 24,4 
«-PSIEtO,t1U) 24,8 
• -PSIEtO,nUI 3,16 
x-PSIEtO,nU) 6,16 
• -PSIEtO,r.U)12,16 
»-PSIElO,nU)24,16 

a W 
-0^ -U-b 

- # = B -
-e-a 

BENCHMARK 4.4 ERROR TRAVERSES PSIE{0,MU) FOR 1-24 OR M-16 

(c) DGF 

-a-a 
o— 

o-PSIEtO,f1U) 24,2 
o-PSIEtO,nU) 24,4 
4-PSIEI0,nU) 24,8 
• -PSIEIO,MU) 3,16 
x-PSIEtO,nU) 6,16 
• -PSIEtO,hU)12,16 
»-PSlEtO,nU)24,16 

Figure 2.28. Angular flux error traverses ij;g(0,y) for DBl, DB3 and DGF 

methods for seven selected discretizations of Benchmark #4 
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BENCHMARK 4.1 ERROR TRAVERSES PSIE(.5,MU) FOR 1-24 OR M-16 

(a) DBl 

BENCHMARK 4.2 ERROR TRAVERSES PSIEl.5,MU) FOR 1-24 OR M-16 

(b) DB3 

o-PSIE(.5,t1U)24,2 
o-PSIEt.5,HU)24,4 
*-PSIEt.5,nU)24.8 
• -PSIEt.S,nU)3,16 
x-PSIEt.S,nU)6,16 
• -PSIEt.5,nU)12,l 
»-PSIEt.5,nU)24,l 

BENCHMARK 4.4 ERROR TRAVERSES PSIE(.5,MU) FOR 1-24 OR M-16 

(c) DGF 

Figure 2.29. Angular flux error traverses ,j. (.5,,) for DBl. DB3 and-DGF 
methods for seven selected discretizations of Benchmark #4 
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BENCHMARK 4.1 

• -0 

(a) DBl 

ERROR TRAVERSE PSIEd. 5,MU) FOR 1-24 OR M-16 
S 

-o-s 
• * — p i — 

-a-e -0-* 

a-PSIEtl 
o-PSIEtl 
A-PSIEIl 
• -PSIEtl 
x-PSIEtl 
• -PSIEf l 
* - P S I E t l 

S,nui24,Q 
5,nU)24,4 
5,nui24,a 
,5,I1U)3.16 
,5,nU)6.16 
,5,nU) 12,16 
,5,WJ)24,I6 

BENCHMARK 4.2 ERROR TRAVERSE PSIE(1.5,MU) FOR 1-24 OR M-16 

• ' 0 

(b) DB3 

—^•^ -
-O-B 

o-PSIEl l 
o-PSIEtl 
*-PSIEIl 
• -PSIEtl 
x-PSIEtl 
• -PSIEtl 
»-PSIEt l 

5,nU)24,Ci 
5,MU)24,4 
5,tlU)Z4,S 
.5,nU)3,16 
.S,HU)6,1S 
,5,nU)124& 
.5,HU)24,© 

BENCHMARK 4.4 ERROR TRAVERSE PSIE(1.5,MU) FOR 1-24 OR M-16 

(c) DGF 

o 
o 

s. 
S. 

•O -0.8 -0-6 -fl"4 -« 

O - P S I E t l . 5 , n U ) 2 4 , 2 
o - PSIEtl.S,f1U) 24 ,4 
* - P S I E t l . 5 , n U ) 2 4 3 
• -PSIEt l .S , t1U)3,16 
x - P S I E l l . 5 , n U ) 6 , 1 6 
• -PS IEt l .S ,nU) 12,18 
• - P S I E t l . 5, nU) 24,16 

o . 
•? 
tn 
O-

? 

g. 
f 

1 . • . ^ 

•fl^/ 0-:. OM 0-6 o-a . i 

Figure 2.30. Angular flux error traverses i/; (1.5,y) for DBl, DB3 aiid DGF 
methods for seven selected discretizations of Benchmark #4 
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Table 2.13. Average absolute scalar flux error for DBl, DB3 and 
DGF methods for sixteen discretization sets of 
Benchmark //4 

BEAPAC 0 5 / 7 6 D P t U . I DBl 2 CELL M.A. X ( 0 , . 5) S» 1 , X ( . 5 , 1 . 5 ) S = 0 , 8 0 0 = 1 . 0 5 

AVG. ABS. SCALAH FLUX ERROR (GLOBAL) 

I : NO. OF XNKSH INTERVALS J : HO. OF MO POINTS 

( a ) D B l J : 2 1 8 16 
1 . 

ERROR 3 . a . 1 5 D - 0 2 6 . 6 8 D - 0 2 5 . i l 9 D - 0 2 5 . 3 0 D - 0 2 

ERROR 6 . 5 . 1 5 D - 0 2 5 . K I D - 0 2 1 . 7 5 D - 0 2 1 . 7 3 D - 0 2 

ERROR 12 . 5 . 2 6 D - 0 2 l t . 8 8 D - 0 2 1 . 1 2 D - 0 2 6 . 2 6 D - 0 3 

ERROR 2a . 5 . 1 8 D - 0 2 14.02D-02 1.01ID-02 3 . 6 0 D - 0 3 

BEAPAC 0 5 / 7 6 BPSM.2 DB3 2 CELL M.A. X ( 0 , . 5 ) S= 1 , X ( . 5 , 1 . 5 ) S = 0 , ND0=1 .05 

AVG. ABS. SCALAR FLOX ERROR (GLOBAL) 

T; KO. OF XMESH INTERVALS J : NO. OF MO POINTS 

J . 2 « 8 16 
I . 

ERROR 3 . 5 . 1 1 D - 0 2 g . 6 9 D - 0 2 1 . 7 8 D - 0 2 1 . 9 9 0 - 0 2 

EHROR 6 . 5 . ? U P - 0 2 H . 8 1 D - 0 2 9 . 9 2 D - 0 3 6 . 2 8 0 - 0 3 

ERROR 12 . 5 . 3 0 D - 0 2 1 . 8 1 0 - 0 2 1 . 0 2 D - 0 2 3 . 5 1 D - 0 3 

ERROR 211 . 5 . 1 9 0 - 0 2 I1 .80D-02 1 . 0 3 D - 0 2 3 . 3 5 D - 0 3 

BEAPAC 0 5 / 7 6 BPfU.K DGF 2 CELL M.A. I ( 0 , . 5) S = 1 , X ( . 5 , 1 . 5 ) S = 0 , H 0 0 = 1 . 0 5 

(b) DB3 

AVG. ABS. SCALAR FLOX ERROR (GLOBAL) 

I: NO. OF XMESH INTERVALS J: NO. OP HO POINTS 

(c) DGF 

ERROR 

ERROR 

ERROR 

ERROR 

J . 
I . 

3 '. 

6 . 

12 . 

21 . 

e. 

n. 

5, 

5. 

2 

.67D-02 

.960-02 

.200-02 

. 17D-02 

4 

1 .390 -02 

1 .940 -02 

1 .81D-02 

1 .810 -02 

8 

2 . 7 1 0 - 0 2 

1 .82D-02 

1 . 19D-02 

1 .03D-02 

3. 

1 , 

6, 

3. 

16 

. 11D-02 

,50D-02 

.690 -03 

.830 -03 
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(a) DBl 

Table 2.14. Relative sum error of pointwise scalar flux errors 
for DBl, DB3 and DGF methods for sixteen discreti
zation sets of Benchmark #4 

BEAPAC 0 5 / 7 6 B P J I . I DBl 2 CELL M.A. X ( 0 , . 5 ) S= 1 , X ( . 5 , 1 . 5 ) S = 0 , NU0 = 1 . 0 5 

EEL. ABS. SCALAR FLOX ERROR (GLOBAL) 

I : NO. OF XMESH INTERVALS J : KO. OF I!0 POINTS 

J . 2 1 8 16 

(b) DB3 

(c) DGF 

ERROR 3 . 6 . 7 7 D - 0 2 1 . 0 9 D - 0 1 8 . 9 5 D - 0 2 8 . 6 5 D - 0 2 

ERROR 6 . 8 . 1 2 D - 0 2 8 . 1 0 D - 0 2 2 . 8 6 D - 0 2 2 , 8 3 D - 0 2 

ERROR 12 . 8 . 6 3 D - 0 2 8 . 0 1 D - 0 2 1 . 8 1 D - 0 2 1 . 0 3 D - 0 2 

ERROR 2 1 . 8 . 5 3 D - 0 2 7 . 9 3 D - 0 2 1 . 7 2 D - 0 2 5 . 9 3 D - 0 3 

BEAPAC 0 5 / 7 6 B P # 1 . 2 DB3 2 CELL B . A . X ( 0 , . 5 ) 5 = 1 , X ( . 5 , 1 . 5 ) S = 0 , ND0=1 .05 

REL. ABS. SCALAR FLOX ERROR (GLOBAL) 

I : HO. OF XKESH INTERVALS J : NO. OF MU POINTS 

J . 2 1 8 16 
I . 

ERROR 3 . 8 . 3 3 D - 0 2 7 . 6 5 D - 0 ? 2 . 9 0 D - 0 2 3 . 2 1 D - 0 2 

ERROR 6 . 8 . 7 1 D - 0 2 7 . 8 7 D - 0 2 1 . 6 2 D - 0 2 1 . 0 3 D - 0 2 

ERROR 12 . 8 . 7 0 D - 0 2 7 . 8 9 D - 0 2 1 . 6 6 0 - 0 2 5 . 7 6 D - 0 3 

ERROR 2 1 . S . 5 1 D - 0 2 7 . 9 0 D - 0 2 1 . 6 9 D - 0 2 5 . 5 1 0 - 0 3 

BEAPAC 0 5 / 7 6 B P » 1 . 1 DGF 2 CELL H .A. X ( 0 , . 5 ) S = 1 , X ( . 5 , 1 . 5 ) S = 0 , ND0=1.05 

REL. ABS. SCALAR FLDX ERROR (GLOBAL) 

I : NO. OF XMESH INTERVALS J : HO. OF MO POINTS 

J *. 2 1 8 16 
I . 

ERROR 3 '. 1.11D-01 7.16D-02 1.12D-02 5.12D-02 

ERROR 6 ! 8.12D-02 8.07D-02 2.98D-02 2.15D-02 

ERROR 12 '. 8.53D-02 7.91D-02 1.950-02 1.10D-02 

ERROR 21 '. 8.51D-02 7.91D-02 1.70D-02 6.30D-03 
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2.2.5 Discussion 

The examples above illustrate types of benchmark problems that can 

be created for studying the error performance of various numerical 

methods. More detailed error studies are necessary to completely char

acterize the error behaviour for various classes of problems, i.e. 

boundary conditions, cross sections and relative cell sizes in multicell 

problems. An advantage of the automated approach taken here is that 

such studies are performed with minimal effort by the analyst. 

An Interesting byproduct of this research is the least squares 

modes analysis technique. For creation of one or two cell benchmark 

problems we treat each cell independently and in two cell problems gen

erate the source necessary to satisfy the interface condition exactly. 

A simple variant of this procedure treats all cells simultaneously, 

perfonning the least squares modes analysis for the entire system. The 

boundary and interface conditions are satisfied in the least squares 

sense. Several attractive features of this new numerical transport 

method are: 

(1) least squares nodes are required only on the problem 

boundaries and cell interfaces. 

(2) relatively few expansion functions and least squares nodes 

should be required for obtaining accurate solutions. 

(3) given the combining coefficients the corresponding angular 

or scalar flux solution can be calculated at any point in 

the problem domain. 

(4) flux discontinuities at interfaces are easily represented. 

As mentioned earlier, questions related to the choice of eigenmodes 

and the placement of the least squares coefficients must be answered 

before the procedure is generally applicable. 

A matrix representation of the proposed method applied to the two 

cell reference problem for BP4 is given by 
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(2.26) 

•QJ(0) -QJ(0) 

-Q i ( . 5 ) 

-QJC.S) 

0 

0 

< i < - ^ > 

Qjl(.5) 

Q i i d . S ) 

' % 

_ - i i . . 

~ 0 " 

^ I 

^ 

0 

where 

(2.27) Q-(x) = [q^(x),q2(x),...,q2jj(x)]-

[q^(x)]- = 

q„(x,±y,) 

n 1 

q^(x,±y2) 

^n("'-V2> 

^^^^••- V2^° 

â ,̂ ̂  are the combining coefficients vectors of length 2N+2 for 

the eigenmodes q (x,y) in cells I and II, respectively. S is the 
n I 

constant source in cell I. 

The solution is obtained by solving Eqn. (2.26) via the Householder 

least squares method for overdetermined systems. The first row 

(Q™ ~ QT^^T ~ 0 in Eqn. (2.26) represents the reflecting boundary con

dition at X = 0. The second and third row represents the interface 

condition at x = .5 and the last row corresponds to the vacuum condition 

X = 1.5. 
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III. THE SYMMETRIZED TRANSPORT EQUATION 

3.1 The Equation and Elementary Solutions 

An alternative approach to solving neutron transport problems Is 

realized by the symmetrized (canonical) transport equation [Vladirlmov 

1963]. The symmetrized operator is self-adjoint and positive definite 

in the case c < 1, where c is the number of secondaries per collision. 

The derivation of the symmetrized equation begins by writing the 

standard equation (1.1) for positive and negative y: 

/•o i\ SiKx-y) . , SI/ \ g(x)c(x) (3.1) y -^i^^-^^^ + a(x)ii;(x,y) ' ^ ' 
dx / 

and 

ij^(x,y')dy' = S(x,y) 

-1 

(3.2) -y ^^^^^ + a(x)Mx,-y) - ^-Mf^ ii/(x,-y')dy' = S(x,-y) 

-1 

Adding and subtracting (3.1) and (3.2) gives respectively 

(3.3) ^ "̂ ''' (x,y) + a(x)<̂ "'"(x,y) - a(x)c(x) ii''̂ (x,y')dy' = S'^(x,v) 

and 

(3.4) y "̂̂ ĝ ""'̂ ^ + a(x)i|."(x,y) = S (x,y) 

where 

(3.5) 2/(x,y) = iĵ (x,y) + i(>(x,-y), 2S'^(x,y) = S(x,y) + S(x,-y) 

(3.6) 2t|* (x,y) = i^(x,y) - i|;(x,-y), 2S (x,y) = S(x,y) - S(x,-y) 

Solving (3.4) for ^ (x,y) we find 

(3.7) 'I' (x.y) __lL_ii. a(x) 9x (̂'̂> •'̂ oo'"^^'•^^ 
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Note, when S(x,y) is isotropic, S (x,y) = 0. Substituting (3.7) into 

(3.3) for regionwise (cellwise) constant cross sections and isotropic 

source yields the equation 

2 2 + rl 
(3.8) - - ^ "^ K'^^ + 0(x)f (x.y) - a(x)c(x) 

^^ 3x 
dX Q 

/(x,y')dy' = S^(x,y), 

Boundary conditions usually considered for this operator are the 

reflecting condition and the vacuum condition. The standard form of the 

reflecting condition at the boundary x=b is 

(3.9) '|'(b,y) = 4'(b,-y) (0 < y < 1) 

which is equivalent to 

(3.10) 4)"(b,y) = 0 

By (3.7) in (3.10) we find for y >̂  0 

(3.11a) 
9/(x.y) 

8x 
= S (x,y) . (reflecting) 

x=b 

The standard form of the vacuum condition is 

(3.12) ij»(b,y) = 0 
y > 0 at b=0 

- a t b=a y < 0 

which Is equivalent to 

(3.13) ^ (b,y) + i|) (b.y) = 0 

Substituting (3.7) into (3.13) for \i >^ 0 yields 

(3.14a) /(b y) = -HF—^ 3/(x»P} 
V KD,U} -[a(b) 8x 

x=b 
a(b) 

S (b,y) (vacuum) 
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where the + sign is used if b=0, the - sign if b=a. 

We apply the benchmark error analysis procedure to study methods 

which solve equation (3.8) and its boundary conditions (3.11a) and (3.14a), 

hence we need to obtain exact solutions to these equations. Given a 

solution i|j (x,y) to the standard equation (1.1), we can obtain the 

corresponding solution I(J (x,y) by using formulas (3.5) and (3.6). 

The inhomogeneous boundary source terms required to make the boundary 

conditions exact are generated from ip (x,y). Note that the source terms 
B 

arise when the exact solution does not exactly satisfy the homogeneous 

boundary conditions. For example, when a vacuum boundary condition is 

specified in the standard equation, a non-zero inhomogeneous source term 

effectively makes it an incident flux boundary condition. In the reflect

ing boundary condition case, the inh<3mogeneous source term gives the 

difference between the incident and emergent flux at the appropriate 

boundary. 

The canonical transport equation boundary conditions are more compli

cated. The inhomogeneous source for the reflecting condition is derived 

from eq. (3.6) and (3.10) and is defined by 

(3.15) 'l''(b,y) = H[i>^ih,M) - ij;g(b,-y)] 

= isfj.(b,y) . 

The general inhomogeneous r e f l e c t i n g boundary corresponding to eq. (3.11a) 

i s 

(3.11b) y -^i^^i^Jii 
dx 

= S (b,y) - 2 M ^ ^ ^ ^ ^ ^ ^ ^ u ^ 0 . 

x=b 

The inhomogeneous source for the vacuum (i.e. incident flux) boundary 

condition is derived from eq. (3.5) and (3.6) and is defined by 

-I- _ [b = O y > 0 
(3.16) i> (b,y) -I- ^l, (b,n) = i,^(h,v) ^ 

b = a y < 0 
= f^(b,y) .*-



105 

The general inhomogeneous vacuum boundary condition corresponding to 

eq. (3.14a) becomes 

(3.14b) i|;"̂ (b,y) + 
y 3ii; (x.y) 

a(b) 8x 
x=b 

^^(x) S"('''̂ > + ^(^'^) 

For expedient application of the benchmark analysis we replace the 

vacuum condition with the following simpler condition. We define 

(3.17) ^ (b.y) = i2(i|'g(b,y) + ii-g(b,-y)) 

= f^(b,y) . 
e 

In Section 3.2.2 (below) we describe the application of a varia

tional method to the canonical equation. Miller (1973) noted that 

the reflecting boundary condition is a natural (or essential) boundary 

condition of the functional minimization. Therefore to properly apply 

the FEM method, we need to generate benchmark problems ijj (x,vi) (hence 
+ 2 
ij;̂ (x,y)) which satisfy the reflecting boundary conditions (3.9) exactly. 
B 

The simplest approach is to generate a typical benchmark solution 

i() (x,y) for a reflecting problem as previously outlined. Then to force 
B 
a homogeneous boundary condition we define the benehmark solution 

(3.18) C(x,y) = i('g(x,y) - [̂ii-g(0,y) - i|;g(0.-y)] 

which satisfies a reflecting boundary condition at x = 0. i)j (x.y) is 

the solution to the new benchmark problem 

(3.19) ^^(x.y) = S(x,y) + 4 ^ [i|)„(0,-y)-ip„(0,y)] = S(x,y) + Q(y) Ltĵ TiV-̂ .M/ "v-^.M/ ' 2 Lrg>.^> f Tg' 

where the right side is in general not symmetric in ^, and 

(3.20) HJ)g(x.y) = S(x,y) 
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is the symbolic description of the original benchmark problem. We can 

generate the corresponding solution ip (x.y) and boundary conditions 

using the solution i|'g(x,y). 

Two cell problems are treated by the procedure described in Section he pi 

R(I). 1.1.6. Here i|j^^(x,y) is replaced by iĵg (x.y). The source term Qj.j(y) 

in cell II is defined by 

^(I) ,TI) R^^^ ( 
(3.21) Qj3.(y) = o^^{^^ (a.y)-i^^ '(a.y)) - o^^c^^i^^ (a)-(̂ g 

similar to Eq. (1.44). 

The present implementation of the canonical transport equation 

includes homogeneous reflecting condition at the left boundary and con

dition (3.17) at the right boundary for the FEM method. 

3.2 Numerical Methods 

3.2.1 The discrete ordinates method with first order finite differences 
in space 

This method uses discrete ordinates approximation in angle and first 

order finite differences to approximate spatial derivatives in eq. (3.8). 

It will be referred to as the DFD method. 

We solve (3.8) by the discrete ordinates method, hence we approxi

mate the integral by numerical integration methods including single 

Gauss quadrature. Then (3.8) becomes a system of discrete second order 

differential equations with D = d/dx: 

(3.22) [- - M^ D^ + al-ocW] ^(x) = ̂ """(x) (0 £ x <̂  a) 

where 

M = 

'^1 
^2_ 

\ 

, W = 

w^w^. 

W W . 

w w 
1 2 

••*M 

" \ 

, Jt (x) = 

^ ( x , y , ) 
+ 

^ (x,y2) 

+ • 
j) (x,yjj)_ 

. l'^(x) = 

S'*'(x,y^)' 

S"^(x.y2) 

/ ( x . y j j ) . 
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To approximate the solution jjĵ  (x) by means of finite differences, 

we generate an equal spaced mesh structure 

x^ = (i-l)h (i = 1.2,....I) 

h = 
I-l 

where the cell boundaries are x. and x . The center of each mesh inter
val (x. 1 < X < X. . ) is at X,. except for the two boundary cells 

1—'S — — l+'S 1 

(x^ £ X £ X3/2) ̂ ^^ (̂ 13- — ^ — ^i^ • 
i_i_ 

Consider the differential equations (3.22) in the i cell; the 

integral of eq. (3.22) becomes 

fX 

(3.23) 
±+h 

[-̂  M^D^ + CT (I-cW) ]^ix) dx = 
^̂ i+J-. 

S'*"(x)dx 

Here, let t = ^ (x.) and S, = S (x.); then we make the approximation 
' -^ - ^ 1 —1 — 1 

^±•^^ 

(3.24) 

fX 

± (x)dx = hjĵ ^ ; 
±+h 

S^(x)dx = hS"!" 

X ±-h \-h 

In the term involving the second derivative there are three cases to 

consider. 

(3.25a) 

(3.25b) -f ^ MDV(x)dx = - -̂  M̂  i 

Ax, 
(3.25c) 

DI3/2 - 04 

" ^ + % 

Dll - IJli_k 

Ax, 

Ax.. 1=2.3 I-l 

Ax, 

A first order finite difference approximation yields 

(3.26) 

I-*- ( + 

Pii4j, h 1 X } 4 < } « « * y X Xa 
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The boundary conditions (3.11b) and (3.14b) are applied to specify 1>^, 

and Dj[̂ j. 

Substituting eqs. (3.24), (3.25) and (3.26) into (3.23) and 

dividing by h (h/2 when 1=1 or 1=1) yields the linear system of equa

tions for 
^ 

(3.27) ^±^-1 "*" ^±^ + ^i^+1 ' -il (̂  = 1,2,....I) 

where 

(3.28a) 

(3.28b) 

B, = <B 

1"̂  
D = -̂D 

i = 1 

(i = 2,3 I-l). 

1 = 1 

1 = 1 

(1 = 2.3,...,1-1), 

1 = 1 

(3.28c) \ = < 

E 1 = 1 

B (1 = 2,3,...,1-1), 

0 1 = 1 

(3.28d) s! = s-r (i = 2,3 I-l), 

(3.28e) 2 2 
D = — r M + CT(I-CW), 

CTh^ 

(3.28f) B = - ^ M ^ 
oh 

B, D^, Dj, E, ̂ ^ and ̂ ^ are dependent on the boundary conditions and are 

defined below. 
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The reflecting boundary condition (3.11b) at x = x., yields 

(3.29a) 

(3.29b) 

and 

(3.29c) 

D = D 

E = 2B 

4 = 4 + f̂ î 4^ î>-î '(V^ 
The vacuum boundary (3.14b) at x = x.|. yields 

(3.30a) B = 2B 

(3.30b) 

and 

(3.30c) 

D.̂  = D + -^ M 1 h 

i t=S. i+ tM[f (x^)+^S-(x,)] 

The special boundary condition (3.17) at x = x_ yields 

(3.31a) 

(3.31b) 

and 

(3.31c) 

E^ = 0 

D^ = I 

h = k^-1^ 

The matrix representation for the case of a reflecting boundary con

dition at the origin and vacuum boundary condition at x = a is 

(3.32) 

D 

B 

2B 

D 

B 

B 

D 

• 
B 

B 

• • 

D B 

2B i^^ 

'£' 
^ 

• 

It 

= 

ii 
h 
• 

• 

J-i. 

Eq. (3.32) is a block tridiagonal system of order IM^IM with block 

matrices of order M'̂ M. The solution technique is block tridiagonal Gauss 

elimination. 
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3.2.2 Piecewise bilinear finite element method in phase space 

This method uses piecewise bilinear polynomial functions in phase 

space. It will be denoted as the FEM method. We outline the basic 

method here; the reader is referred to [Miller, 1973] for a detailed 

derivation. 

Equations (3.8) and (3.14a) minimize the functional 

(3.33) F[/(x,y)] = <̂ [y '̂̂  ̂ ^^^^) + 0^^>'^(:x,v)^ - CTc/(x,y)J i|''*'(x,y')dy' 

- 2/(x,y) S"̂ (x,y) - 2y - ^ S (x,y)> 

where 

+ «/(x,y), /(x,y)-2f (x,y)»- ± «'V'^(X,M), f (x,y)» 
V ox r dx ,, 

vac refl 

(3.34a) <f(x,y)> = 

and 

fa rl 

dx dy f(x,y) 

0 0 

(3.34b) «f(x,y)» 
°x £1 refl ^ 
vac 

1 
dyyf(x,y) 

"^'Vfl 
vac 

That is, finding the minimum point of equation (3.33) is equivalent 

to solving its Euler equations, (3.8) and (3.14a). Reflecting boundary 

conditions are natural (essential) boundary conditions [Strang and Fix. 

1973] of the minimization and are applied wherever the vacuum boundary 

does not apply. 

In order to solve for I(J (x.y) in Eq. (3.33), the phase space domain 

is divided into (I-l)•(M-1) connecting, but non-overlapping rectangular 

subdomains or finite elements defined by (x, ̂  x ̂  -̂o-i) ̂"*̂  

(y < y < V_.^) for 1=1,2,...,1-1 and m=l,2,...,M-1. The cross sections m — — mri 

are assumed piecewise constant in space with discontinuities permitted 

at inter element boundaries. The solution ]\) (x,y) is approximated by 

piecewise bilinear polynomial trial functions 4, (x,y) such that 
im 

(3-35) ,(; (x,y) ~ ij; (x,y) = 1 1 qim^lm^^'^^ * 
1=1 m=l 
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The ()) (x,y) are defined by 

(3.36) *i^(x,y) 

^e^(x)0;(y) 

e^(x)0;(y) 

e:(x)0^(y) 

0:(x)0~(y) 
1 m 

(1=1,2,...,!), (m=l,2 M) 

where 

(3.37a) e^(t) =i 
h+r^ 
At, \ ^ ' ^ ^-1 

0 otherwise 

(3.37b) 

t-t 1-1 

0i(t) = \ - J^t. ^1-1 -̂  ̂  ̂  ^i 
i-l 

0 otherwise 

At. = t.^,-t. 1 1+1 1 

The (j). are defined so that im 

(|).„(x. ,y ) = 6. .6 im i n ij mn 

where 6 is the Kronecker delta. If I(iJ; ) = minimum then 
rs 

(3.38) ~+ 
q. = i|) (x. .y ) 
im ^ 1 m 

Substituting (3.35) into (3.33) and minimizing F[iij(x,y)] with 

respect to variations in the q. yields the matrix equations 

(3.39) [-K̂ >̂ + K^°^ - K̂ -̂ ^ + K^^^^'hl = 1 



112 

where 

(3.40) £ = 
^im 

^lm+1 

(m=1.2 M), (1-1,2....,I) 

The symmetric block tridiagonal streaming matrix is defined by 

„(1) ;,(1) 
^11 ^12 

(3.41a) 

where 

and 

K 
(1) 

„(1) „(1) ^(1) 
^̂ 21 ^̂ 22 ^23 

; ( i ) ; ( i ) ; ( i ) 
Vl,I-2 *̂ -l,I-l V l , I 

^ , 1 - 1 ^ I 

(3.41b) {K^^h = {iL. M .(x)) (1=1,2,...,1), (m=1.2.....M). 
^ ^ ij -"mk \ "̂ im ' "̂ jk ̂  (j=1-1,1,1-1-1), (k=m-l,m,nri-l) 

K is a tridiagonal matrix. 

The syimnetric block tridiagonal collision matrix is defined by 

x,(0) 

(3.42a) K 
(0) 

(0) 
11 
(0) 
21 

12 
(0) 
22 

0 

.(0) 
^23 

n:-l,I-2 Vl,I-l Vl,I 
.(0) (̂0) 
^.I-l II 
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where 

(3.42b) (K??>] = <a <b. A ,> ^^'^^'^ ^^' (m=l,2....,M) 
^ ij ̂ mk n^im'^jk (j =1-1,1,1-1-1) , (k=m-l,m,m+-l) 

n=mln(i,j) . 

K is a tridiagonal matrix. 

The symmetric block tridiagonal scattering matrix is defined by 

(3.43a) K (-1) 

(-1) 
11 
(-1) 
21 

12 
(-1) 
22 

0 

K, (-1) 23 

• K(-I) 
1-2,1-1 ^̂ 1-1,1-1 V l , I 

,(-1) 
1,1-1 K. (-1) II 

where 

("3 43b'> TK̂ "-̂ "̂! = <fT r A HII» A > (i=1.2,.. .,1), (m=l,2,. ...M) 
(3.43b) tK̂ j Ĵ ^ ^^n'^jk'J ^^ *im^ (j =1-1.1.i+l) , (k=l,2,... ,M) 

0 n=min(i,j), 

K is a dense matrix. 

The symmetric block diagonal vacuum boundary condition matrix is 

defined so that 

(3.44a) 

where 

K 
(vac) 

K. 
(vac) 
11 

Tf(vac) 

(3.44b) '• ij •'mk ^im'^jk 9x 
vac 

(vac) 
K is a tridiagonal block matrix. 

i=j=l or l=j=I 
(m=1.2,.,.,M), (k=m-l,m,m+l). 
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The source vector has the form 

(3.45a) S = 

S^ix) 

S2(x) 

lj(x) 

(3.45b) S,(x) = 

"<i^^'il 

<2 ^ h2 

S^ S^ 
^IM IM 

(3.45c) 
im 

<*^^, S (x,y)> 

(3.45d) 
y9<>>._ 

îm = ̂ -17-' ̂ '(-'^^^ 

where S (x,y) and S (x,y) are assumed piecewise constant in space and 

piecewise linear in angle. 

As noted in section 3.1, special benchmark solutions il* (x,y) (eq. 
B 

3.18) are created which satisfy the reflecting boundary condition at 

the origin x = x.. = 0 . The vacuum condition at x = x^ may be replaced 

by eq. (3.17) which specifies the even parity flux ^i (x.|.,y). The last 

block of equations in (3.40), block I, is eliminated and the given 

flux values ijj (x ,y) are substituted into the equations for block I-l 

with the resulting teinns added to the source term. 

The system of equations (3.40) are solved by Choleski decomposition 

using a storage scheme which utilizes the symmetric band matrix property, 

i.e., only the upper triangular half of the matrix is stored in a 

rectangular array of dimension 2MxIM. 
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3.3 An Example of the Benchmark Problem Error Analysis Procedure 

A one cell benchmark problem is presented which illustrates a typical 

application of the benchmark error analysis procedure to the DFD and FEM 

methods of this chapter. The error performance for twenty space/angle 

discretization sets is discussed. 

3.3.1 Benchmark #5, a one cell least squares modes analysis 

The reference problem configuration for BP5 is identical to the one 

used in BP4 in section 2.2.3. The corresponding reference solution 

ij) (x,y) is displayed in Fig. 2.9. We generate a one cell benchmark solu

tion i|jg(x,y) in the first cell of the reference problem subject to the 

requirement that i('„(0,y) satisfies exactly the homogeneous reflecting 
D 

boundary condition at x = 0 (i.e. ij;„(0,y) = i|ĵ (0,-y)) as in Eqn. (3.19). 

The reference and benchmark problem scalar flux <|)_(x) and <|) (x) , and 
R B 

the angular flux 4'„(x,y) and ijj (x,y) are illustrated in Fig. 3.1. A 
R B 

comparison with the corresponding solutions in cell I of Benchmark 4 in 

Fig. 2.24 reveals that the most noticeable change in i|) (x,y) occurs in 

the neighborhood of y = .1 where the enforcement of the homogeneous boun

dary condition in BP5 causes i|).t̂(0,y) to be symmetric about y = 0. 

The least squares modes analysis in cell I results in combining 

coefficients A(v) and a ± (Fig. 3.2a) which are identical to the coeffi

cients for cell I in BP4 (Fig. 2.25). The sum of the fixed source (S=.5) 

and Q(y), the source term required to satisfy the homogeneous reflecting 

boundary condition at x = 0, are displayed for cell I in Fig. 3.2b. 

Traverses of the even parity angular flux i|;g(x,y) corresponding to 

i|'„(x,y) are displayed in Fig. 3.3 for 0 < y < 1 in cell I (note that 
? ~ ~ 
'/'-(x.y) is symmetric about y = 0) . The flux discontinuity observed in 
B 

Fig. 3.1b at y = 0 at the interface x = .5 causes the even parity flux 

to decay rapidly near the interface x = .5 as y approaches zero. 

The even and odd parity source teirms corresponding to the source in 

Fig. 3.2b are displayed in Fig. 3.4. The odd parity source S~(y) is due 

to the source Q(y) introduced to satisfy the homogeneous reflecting 

boundary condition at x = 0. 
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BENCHMRRK 5 SCRLRR PLUX PHIR(X] VS. PHIB(X} 

(a) X 

LEGEND 
D-PHIR(X) 
o-PHIB(X) 

BENCHMflRK 5 RNG FLUX PSIR(X,nU) VS. PSIB(X,MU) POR X-0,.5 

(b) 

LEGEND 
o-PSIR(0,nU) 
o-PSIR(.5,nU) 
A-PsiB(0,nui 
+ -PSIBt.5,MU) 

Figure 3 . 1 . Comparison of DB3 reference so lu t ion and benchmark 
so lu t ions for Benchmark //5 
a. Scalar flux (})„(x) vs. (t)g(x) . 
b. Angular flux iJj (x,y) vs. ij;g(x,y) at x = 0 and x = .5. 
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(a) 

BENCHMRRK 5 R(NU] POR CELL I POR N-3,flLPHR-.18 

-l-O -0-8 -0-6 -0-4 -0-2 0-0 0-2 0-4 0-6 0-8 1-0 

NU 
LEGEND 

NUO- 1-0500 o-fl(NU) CELL I fl0+—0-2634 flO—0-4H2 

(b) 

1-0 

3 a • o-

-0-8 

BENCHMRRK 

-0-6 -OM 

5 SRCO[MU] POR CELL I 
to 

m 

o~ 

o T . 
o o a: 
tn 

o " 

o 

-0-2 0 0 0-2 0-4 0-6 0-8 1-
MU 

LEGEND 
a-SRCQ(MU) 

Figure 3.2. (a) Combining coefficients A(v) and a-± from least 
squares modes analysis, 

(b) Regionwise constant angular source in cell I 
for Benchmark #5. 
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BENCHnflRK 5 EVCN PARITY FLUX PSIBMX,nUl MU-1, . 5 . . 2 5 ^ 1 , 0 

( a ) 

0-00 0-05 O-IO 0 - 1 5 

o 
o 
A 
+ 
X 

0 - ; 

-PSIB+ 
-PSIB+ 
-PSIB+ 
-PS1B+ 
- PSIB-* 

!0 0 

tx. 
tx, 
IX, 
tx, 
IX, 

•2S 

X 

1) 
.b) 
.2b) 
.0}) 
0) 

0 30 0-35 0-10 O-IS 0-SO 

BENCHnflRK 5 P»rK, PHRITY FLUX P5IBHX,nU) X-0. . U - 2 5 45, .5 

(b) 

a-PSIB+lO,nU) 
o-psiB+t.i,riu) 
&-PSIB+l.25,nU) 
+ -PSIB+I.45,MU) 
x-PSIB+t.5,nU) 

0-0 
1 

0-1 
I 

J-2 0-3 
I " 

0-* 
I • 

0-S 
MU 

I 
0-6 

I • 
0-7 

I 
0-8 

I 
0-9 1-0 

Figure 3 .3 . Even parity angular flux traverses for 

Benchmark ^̂5 CA A 
(a) Traverse along x for fixed y 
(b) Traverse along y for fixed x 
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BENCHMRRK 5 EVEN/ODD PRRITY SOURCES SRCB+(MU] / SRCB-(MU) 
in 
A 8 e B B H B B a B B O B B B B B n B B O B 

I 
CD 

o: 
CO n 

• n y B y — ^ h — 1 ^ ^ ^ ^ = ^ 

0-* 0-S 

MU 

LEGEND 
o-SRCB+(MU) 
o-SRCB-tMU) 

0-6 0-7 0-8 
—I 
0-9 1-0 

Figure 3.4. Even and odd parity sources for Benchmark #5 
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Similar to BPl, BP2 and BP3 we generate twenty space/angle mesh 

discretization sets and solve the resulting one cell benchmark problems 

by the DFD and FEM methods of this chapter. The equally spaced mesh 

Intervals are successively halved in length so that h = .5/1 (1=1,2,4,8, 

16) . The angular quadrature for the DFD method is the P„ quadrature set 

(N=l,2,4,8) for the interval (0 jf̂  y _̂  1) . This corresponds to the same 

quadrature sets used in the previous examples for each half range of y 

(i.e. 0 ̂  y ̂  1, -1 _< y ̂  0). The FEM quadrature sets have equal spaced 

mesh points with Ay = 1/j (j=l,2,4,8). At the interface x = .5 we apply 

the inhomogeneous source boundary condition Eqn. (3.17) which supplies 

the even parity flux values ij; (.5,y). This means we need not solve for 
+ + 
ij^_(.5,y). The values of i(/ (.5,y) are substituted into the matrix equa-
C a 

tions for the unknown fluxes and the resulting terms are transferred to 

the right hand side of the equations and treated as a source term. 

The maximum absolute scalar flux error ||^|^ with associated sign 

is tabulated in Table 3.1. For all but the highest order quadrature set, 

the error 4 reaches a minimum and subsequently begins increasing as the 

number of mesh intervals increases. Figure 3.5 illustrates the scalar 

flux error behaviour for the DFD and FEM methods. For a majority of the 

discretizations the maximum error successively shifts towards the mesh 

interval adjacent to the interface at x = .5. Here ij/ (.5,y) is specified 
B 

exactly so that the scalar flux error is due to the angular quadrature 

discretization only and as we expect the error is reduced at the inter

face. As observed in previous benchmark problems the angular quadrature 

approximation has the most significant effect on the error and the spatial 

discretization is not as important. 

The even parity angular flux error ||'l'g||̂  is tabulated in Table 3.2. 

Eight selected error traverses corresponding to I = 16 or M = 8 (DFD) 

and M = 9 (FEM) are displayed in Figs. 3.6 and 3.7 at x = 0 and x = .25 

respectively. For the 8 angle discretization in the DFD method and for 

nearly all angular discretization in the FEM method, the angular loca

tion of the maximum error is located at the angular coordinate nearest 

to zero. As we approach x = .5 the angular error decreases due to the 

exact boundary condition and the location of the maximum error shifts 

closer to y = 0. 
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Table 3.1. Maximum absolute signed scalar flux error ±||̂  || tabulated 
for twenty space/angle discretization sets of^Benchmark #5 
for DFD and FEM methods 

BEAPAC 0 5 / 7 6 BP# iT.S' 1 CELL tlODSS ANALYSIS X ( 0 , . 5 ) S = 1 , X ( . 5 , 1 . 5 ) S = 0 , 1100=1.05 

HAX. ABS. SCALAR FLUX ERKOE AND LOCATION (GLOBAL) 

(a) DFD 

I : NO. 

EEEOR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

ERBOR 
EXACT 
X LOC 

OF XBESH INTERVALS 

J . 
I 

1 

2 

1 

8 

16 

1 

9 . 5 8 D - 0 2 
1.113 
0 . 0 

1 .02D-01 
1.06a 
0 .250 

1 .010 -01 
1.06a 
0 .250 

1.00D-0 1 
1.06« 
0 .250 

1 .00D-01 
1.061 
0 .250 

J : NO. 

2 

- 2 . 7 3 D - 0 2 
0 .790 
0 .500 

- 3 . 7 6 D - 0 2 
1 . 113 
0 . 0 

- 1 . 12D-02 
1.113 
0 . 0 

- 1 . 2 1 D - 0 2 
1.115 
0 . 0 6 3 

- 1 . 2 7 D - 0 2 
1.115 
0 .063 

OF HU POINTS 

1 

- 5 . 3 3 D - 0 3 
0 . 7 9 0 
0 .500 

- 5 . 3 3 D - 0 3 
0 . 7 9 0 
0 . 5 0 0 

- 6 . 3 0 D - 0 3 
1 .113 
0 . 0 

- 8 . 2 0 D - 0 3 
1.027 
0 . 3 1 3 

- 3 . 9 3 D - 0 3 
1 .001 
0 . 3 1 1 

8 

1 .26D-02 
1 . 113 
0 . 0 

7 . 6 1 0 - 0 3 
1 .061 
0 .250 

1 .51D-03 
0 .976 
0 .375 

2 .80D-03 
0 .907 
0 .138 

2 .33D-03 
1 .001 
0 . 3 1 1 

BEAPAC 05/76 BP# ff.e 1 CELL KODES ANALYSIS X(0,.5) S=1, X(.5,1.5) S=0, NH0=1.05 

KAX. ABS. SCALAR FLUX ERROR AND LOCATION (GLOBAL) 

SO. OF XMESH INTERVALS OF HU POINTS 

(b) FEM 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X LOC 

ERROR 
EXACT 
X LCC 

ERROR 
EXACT 
X LCC 

ERROR 
EXACT 
X LOC 

J 
I 

1 

2 

b 

8 

16 

2 

. 6 .11D-02 
0 .790 

. 0 .500 

. 7 .21D-02 
1 .061 
0 .250 

9 . 0 3 D - 0 2 
. 0 .976 

0 .375 

9 . 190-02 
0 .907 
0 .138 

9 . ' 8 D - 0 2 
0 .915 
0 .106 

3 

1 .18D-02 
0 .790 
0 .500 

1 .18D-02 
0 . 7 9 0 
0 .500 

5 .07D-02 
0 .976 
0 .375 

5 .b2D-02 • 
0 .907 
0 .138 

5. 85D-02 
0 .907 
0 . 1 3 0 

5 

- 1 . 6 7 0 - 0 2 
1 .113 
0 . 0 

1 .23D-02 
0 . 7 9 0 
0 .500 

1 .23D-02 
0 . 7 9 0 
0 . 5 0 0 

1 . 7 2 0 - 0 2 
0 .907 
0 . 1 3 6 

2 . 0 5 0 - 0 2 
0 .860 
0 . 1 6 9 

9 

- 5 . 9 7 D - 0 2 
1.113 
0 . 0 

- 1 . 7 6 D - 0 2 
1 .061 
0 .250 

- 8 . 0 1 D - 0 3 
0 .976 
0 .375 

- 2 . 6 5 D - 0 3 
0 .907 
0 .138 

- 1 . 9 9 D - 0 3 
1 . 113 
0 . 0 
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BENCHnRRK 5 .5 SCflLflR TLUX ERROR PHIEtX) FOR 1-16 OR M-8 

s 
o 

o 

o 
o 

(a) DFD t jS 

a. 
SjE 

o -PH IE IX ) 
o -PHIE(X) 
A -PHIE tX ) 
+ -PHIE(X) 
X -PHIE tX) 
o -PHIE tX ) 
V -PHIE tX) 
B-PHIEtX) 

1-00 a 0-03!' a-10 a 9-te-

BENCHMARK 5 .6 SCflLflR FLUX ERROR PHIE(X) FOR 1-16 OR M-9 

LEGEND 
a-PHIE(X) 
o-PHIEtX) 
A-PHIE(X) 
+ -PHIEtX) 
x-PHIEIX) 
0-PHIEtX) 
v-PHIEtX) 
• -PHIEtX) 

16,2 
16,3 
16,5 
1,9 
2,9 
4,9 
8,9 
16,9 

Figure 3.5. Scalar flux error <t>p(x) for DFD and FEM methods 

for eight selected discretizations of Benchmark #5 
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Table 3.2. Maximum absolute signed angular flux error ±||j|c,|| for 
twenty space/angle discretization sets of Benclmark #5 
for DFD and FEM methods 

BEAPAC 0 5 / 7 6 BP» SIS 1 CELL HODES ANALYSIS X ( 0 . . 5) 5 = 1 , X ( . 5 , 1 . 5 ) S = 0 , KD0=1 .05 

HAX. ABS. VECTOR FLUX ERROR AND LOCATION (GLOBAL) 

I : NO. OF XHESH INTERVALS J : NO. OF HU POINTS 

(a) DFD 

ERROR 
EXACT 
X LOC 
MULOC 

ERPOa 
EXACT 
X LOC 
HO IOC 

ERROR 
EXACT 
X LOC 
HULOC 

ERROR 
EXACT 
X LOC 
HULOC 

EBPOR 
EXACT 
X LOC 
HULOC 

J 
I 

1 

2 

1 

8 

16 ! 

1 

. 1.26D-02 

. 0.521 

. 0.0 

. 0.500 

9.630-03 
. 0.521 

0.0 
0.500 

8.81D-03 
. 0.521 

0.0 
0.500 

8.61D-03 
0.521 
0.0 
0.500 

8. 580-03 
0.521 
0.0 
0.500 

2 

9.81D-03 ' 
0.690 
0.0 
0.211 

-3.33D-03 
0.690 
0.0 
0.211 

-6.88D-03 
0.690 
0.0 
0.211 

-7.76D-03 
0.690 
0.0 
0.211 

-7.99D-03 
0. 690 
0.0 
0.211 

4 

1. 15D-02 
0.612 
0.0 
0.330 

1.06D-02 
0.761 
0.250 
0.069 

7.510-03 
0.701 
0.375 
0.069 

-2.97D-03 
0.761 
0.0 
0.069 

-1.92D-03 
0.761 
0.0 
0.069 

8 

1.65D-02 
0.672 
0.0 
0.237 

1.28D-02 
0. 710 
0.250 
0.102 

6.980-03 
0.719 
0.375 
0.020 

1. 15D-02 
0.720 
0.138 
0.020 

7.71D-03 
0.665 
0.169 
0.020 

BEAPAC 05/76 BP# 5.6 1 CELL MODES ANALYSIS X(0,.5) S=1, X(.5,1.5) S=0, Sn0=1.05 

MAX. ABS. VECTOR FLOX ERROR AND LOCATION (GLODAL) 

(b) FEM 

1: NO. 

EREOR 
EXACT 
X LOC 
MOLOC 

EREOR 
EXACT 
X LOC 
HULOC 

EREOR 
EXACT 
X LOC 
HULOC 

ERROR 
EXACT 
X LOC 
HULOC 

ERROR 
EXACT 
X LOC 
HOLOC 

OF X 

J 
I 

1 

2 

1 

9 

16 

1ESH INTERVALS 

2 

. 1.13D-02 
0.338 

. 0.0 
1.000 

7.690-02 
0.773 
0.250 
0.0 

1.510-01 
0.750 
0.375 
0.0 

2.01D-U1 
0.733 
0.138 
0.0 

2.31D-01 
0.721 
0.169 
0.0 

J: NO. 

3 

-1.19D-01 
0.783 
0.0 
0.0 

-6.51D-02 
0.783 
0.0 
0.0 

7.13D-02 
0.750 
0.375 
0.0 

1.52D-01 
0.733 
0.138 
0.0 

2.02D-01 
0.721 
0.169 
0.0 

OF MU POIST 

5 

-1.86D-01 
0.783 
0.0 
0.0 

-8.20D-02 
0.773 
0.250 
0.0 

-1.12D-02 
0.773 
0.250 
0.0 

7.500-02 
0.733 
0.138 
0.0 

1.500-01 
0.721 
0.169 
0.0 

S 

9 

-1.66D-01 
0.783 
0.0 
0.0 

-9.18D-02 
0.773 
0.250 
0.0 

-7.320-02 
0.750 
0.375 
0.0 

-3.39D-02 
0.750 
0.375 
0.0 

7.12D-02 
0.721 
0.169 
0.0 
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BENf̂ MRRK 5.5 ERROR TRAVERSES P S I E I O . M U ) FOR 1-16 OR M-8 

tj8 
(a) DFD S^° 

O-

o-PSIEt0,MU)16,1 
o-PSIE(0,MU)16,2 
A-PSIE to, MU) 16, 4 
+ -PSIE(0,MU) 1,8 
x-PSIEtO,MU) 2,8 
<>-PSIEtO,MU) 4,8 
'-PSIEtO,MU) 8,8 

PSIE(0,MU)16,8 

BENCHMflRK 5.6 ERROR TRAVERSES PSIEIO.MU) FOR 1-16 OR M-9 

+ 
(b) FEM ^ 

a- ° 

x 
ru -Hk-4#::::5^Ii--=*~~;5Ii-^^ 

—^ * 

MU 

1 ^ i ~ • 1 • 1 
0-6 0-7 0-a 0-9 

LEGEND 
a -PS I E to, MU) 16,2 
o-PSIE(0,MU) lG,3 
A-PSIE(0,MU)16,5 
+ -PSIEtO,MU) 1,9 
x-PSIEtO,MU) 2,9 
<>-PSIE(0,MU) 4,9 
v-PSIE(0,MU) 8,9 
• -PSIE10,MU)16,9 

1 

1 

Figure 3.6. Even parity angular flux error traverses 4i"*"(0,y) for DFD 
and FEM methods for eight selected discretfzations of 
Benchmark #5 
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BENCyMflRK 5.5 ERROR TRAVERSES PSIE1.25,MU] FOR 1=16 OR M-8 

,+, BENCHMRRK 5.6 ERROR TRAVERSES PSIE(.25,MU] FOR 1=16 OR M-9 

o-PSIEt. 
o-PSIEt. 
A-PSIE(. 
+ -PSIE(, 
x-PSIE(. 
*-PSIE(. 
v-PSIE(. 

25, MU) 16,2 
25, MU 116,3 
25, HU 116,5 
25,MU)2,9 
25,MU)4,9 
25,MU)8,9 
25, MU 116,9 

Figure 3.7. Even parity angular flux error traverses 

i(;p(.25,y) for DFD and FEM methods for seven 
selected discretizations of Benchmark #5 
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The average absolute scalar flux error and the relative sum error 

of the scalar flux is tabulated in Table 3.3. The error performance is 

similar to the angular flux error results previously discussed. For 

nearly all cases the error reaches a minimum and then increases as the 

number of spatial mesh intervals are decreased. 
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Table 3.3. Average absolute scalar flux error and relative sum 
error of pointwise scalar flux for DFD and FEM methods 
for twenty discretization sets of Benchmark #5 

SEtPXC OS/76 Btt\0.f 1 CEIL NOUES AUtLYSIS X ( 0 , . S ) S ' l , X ( . S , 1 . S ) S'O, lUO-I.OS 

ITG. A9S. SCXLAE FLUX EBROB (eiOBtL) 

(a) DFD 

I : VO. 

I t BOB 

EREOR 

IBFOR 

ERBOB 

ERROR 

or xaz 

I 

1 

2 

0 

8 

16 

StPAC 05/7S 

. 
• 

. 

. 
• 
• 

SB IBTSRVJILS 

1 

S.90D-02 

7.13D-02 

8.03D-02 

8.5ilD-02 

8.800-02 

BPlto.6 1 

J : NO. 

2 

2.56D-02 

3.11D-02 

3.19D-02 

3.1VD-02 

3.10S-02 

CELL NODES 

OF su pomis 

* 

l|.<l6D-03 

3.990-03 

S.64D-03 

6.300-03 

6.47C-03 

AHUTSIS X(C, 

8 

7.190-03 

11.263-03 

2.91D-03 

2.30D-03 

2.0SD-03 

.5) S«1, X 

iTC. IBS. SCltXR FLOX EBROB (SLOBAl) 

I : 1 0 . OF IHESB ISTESVALS Jl iO. OF HO POIBTS 

J : 2 3 S 9 
I . 

EBBOB 1 '. « . 2 2 0 - 0 2 3 . 2 9 0 - 0 2 2 .9SD-02 3 . 0 3 0 - 0 2 

EBBOB 2 *. 6 .01D-02 3 .01D-02 6 . 1 6 0 - 0 3 7 . 8 9 0 - 0 3 

( b ) F E M EREOR • '. 6 . 8 S 0 - 0 2 3 . 7 0 0 - 0 2 1 . 0 0 0 - 0 2 3 . 6 2 0 - 0 3 

EBROP 8 '. 7 . 2 1 0 - 0 2 3 . 9 9 0 - 0 2 1.21D-02 1 .S7D-03 

EBBOB 16 1 7 . 1 1 0 - 0 2 1 . 1 2 0 - 0 2 1 .29D-02 1 . 1 0 0 - 0 3 

KIPAC 0 5 / 7 6 BP.IflJ 1 CSLl HODZS ARAIISIS X(O..S) S - l , X ( . 5 . 1 . 5 ) S-O, KOO-I.OS 

K l . ABS. SCAIAB PLOX EBBOB (GLOBAL) 

I : 1 0 . OF IflESH laiEBVALS J : BO. OF SO POIHTS 

J : 1 i » • 

(c) DFD 

BBBOR 

EBBOB 

ZBBOB 

EBBOB 

EBBOB 

KAPAC 1 

1 

2 

t 

8 

16 

»S/76 

• 

" 
, 
• 

• 

6.200-02 

7.21D-02 

7.950-02 

8.3CD-02 

0.570-02 

BPI10.6 1 

2.690-02 

3.110-02 

3.150-02 

3.07D-02 

3.020-02 

1 CELL BODCS 

1.690-03 

1.030-03 

5.590-03 

6.170-03 

6.300-03 

ASALISIS 1 ( 0 , 

7 .560-03 

1.300-0 3 

2 .830-03 

2.250-03 

2.000-03 

.5 ) S - 1 . : 

» E l . ABS. SCALAR FLOX ER30B (GLOBAL) 

l : , 0 . OF HESH HtEB»ALS J : « 0 . OF 80 POlBtS 

3 '. i 3 i 

„ , 0 . 1 : . . " " - O ^ 3.160-02 3.100-02 3 . 1 , 0 - 0 2 

E.BOB 2 : . . 0 8 0 - 0 2 3 . 0 1 . - 0 2 « . » 0 - 0 3 7.980-03 

( d ) F E M „ , , , , : . . „ 0 - 0 2 3.660-02 9.91O-03 3.590-03 

EBPO, 8 : 7 . 0 , 0 - 0 2 3 . , . 0 - 0 2 1.100-02 l . « 0 - 0 3 

„ „ 0 . 16 : 7 .220-02 1.010-02 l . « 0 - 0 2 1.360-03 
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IV. SUMMARY AND CONCLUSION 

We have shown how exact one-or two-cell benchmark problems can be 

created for arbitrary cells within a multicell reference problem using 

eigenmodes of the homogeneous one-dimensioned monoenergetic transport 

equation with isotropic scattering. The benchmark problems can be 

created by manually or automatically selecting eigenmodes combining 

coefficients. 

Several benchmark problem examples illustrated most of the fundamental 

capabilities (summarized below) of the BEAPAC-IT code. 

(1) one or two cell standard and even parity (syiranetrized) angular 

flux benchmark problems. 

(2) inhomogeneous vacuum and reflecting boundary conditions. 

(3) manual or automatic benchmark solution synthesis. 

(4) error analysis of built-in or external methods (via interface 

files). 

(5) relative or absolute error tabulation of maximum, average or 

relative sum errors of angular and scalar flux. 

(6) simple specifications to create arbitrary sets of space/angle 

mesh refinements for any benchmark problem. 

(7) residual calculations for checking the accuracy of the 

eigenmodes. 

The advantage of this automated approach to error analysis is that 

with a few hours of work and negligible computation costs, the analyst 

can obtain detailed information on the error performance of a particular 

method for a particular problem configuration. The major task required of 

the analyst is to supply the necessary interface data sets to BEAPAC-IT. 

Item (7) above proved to be useful in debugging the eigenmodes cal

culation. The fact that the eigenmodes are exact solutions was an 

invaluable tool for debugging the transport theory methods built into 

BEAPAC-IT. Using the interface files of BEAPAC-IT, these exact solutions 

could be used for similar purposes In externally developed codes. 
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The least squares modes analysis method has a number of unanswered 

questions related to the optimum number of modes and placement of least 

squares points. The results so far are rather encouraging. Implementa

tion of a variant of this method is planned for 1-D transport calculation. 

Extensions of the benchmark error analysis techniques to two- and 

three-dimensional methods is under way. 
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APPENDIX A 

Chapeau Function Expansion of A(v) 

A.l The Expansion for the Angular Flux 

A.1.1 The standard basis 

In Section 1.1.3 we constructed benchmark solutions i|'_(x,y) in a 
B 

c e l l D(0,a) of the genera l foinn 

N 
(1.9) ii)g(x,y) = I a^^q+^(x,y) 

n=0 

The transient elementary solutions q. (x,y), (n = 0,1 N-1) in 
—n 

the standard basis are obtained from the general solution (1.4b) by 

requiring A(v) and A(-v) to have the form 

(1.11a) 
N-1 

A(v) = I a^0^(v) 
n=0 

0 < V < 1 

(1.11b) 
N-1 

A(v) = I -̂n̂ n̂ ""̂ ^ 
n=0 

-1 < V < 0 

The 0 (v) are the Chapeau functions defined by 

(1.12a) 

V - V 
n - 1 

Av 

e,(v) = < 

n - l 

V l - ^ 
Av_ 

n 

v , < v < v n = 1 , 2 , . . . , N - 2 
n -1 — — n 

V < v < v , T n = 0 ,1 N-2 
n — — n+1 

otherwise 

where Av = V . - - V . 
n n+1 n 

9„ 1(v) i s t r e a t e d in Appendix A.1 .2 . 
N—1 
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The construction of q (x,y) will now be developed for the first 

integral in (1.4b) which, upon substitution of (1.11), yields 

ry 
(1.13a) q„(x,y) = 

n+1 
0 (v)(t) (y)e"^^^dv (n = 0,1,...,N-1) 
n V 

"n-1 

Substitution of (1.7), (1.8) and (1.12a) into (1,13) yields 

(A.l) q„(x,y) = -
n I. 

f\ ^-\-l V -x/v, ^ f V l V r ^ V -x/v. 
e dv + J —:; e dv 

•' Av 1 v-y •' Av v-ii 
V , n-1 V n 
• n - 1 n 

+ 0 (v) (l - -f y £n 
n z 

1+y 
l-y 

le"""/̂  (n=0,l,2,...,N-2) 

The first term on the right hand side of (A.l) can be manipulated so 

that 

(A. 2) 

where 

fV V - V 1 / 

n n-1 V -x/v -; ^-^—^^ e "'"dv = - - ^ ^ [Y ,(x) + (y-v J B ,(x,y)] 
Av , V - y Av 1 "-'n-l n-1 n-1 •" 
n-1 n-1 

n-1 

(A. 3) Y^(x) = E3 " °-̂ ^ (X) = 
rv n+1 -x/v, 

ve dv 

and 

(A. 4) e^(x,y) = I^ ° °^^ (x,y) = 
n+1 V -x/v, 

e dv. 
v - y 

n 

By similar manipulations, the second term on the right hand side of (A.l) 

is 

(A.5) 
^ _i_i •^ j^i - '^ / n+1 n+1 V -x/v, 

—;; e dv 
Av^ v - y n 

- M T fYn(̂ > -̂  (^-Vl>^n(^'^>l 

n 



133 

Upon substitution of (A.2) and (A.5) into (A.l), we obtain the equations 

(A.6a) to (A.6e) summarized in Table A.l for the various values of y. 

Eq. (A.8) is obtained from 

3„(x,y) = B .,(x,y) + B (x.y) 
n n—1 n 

Appendix B gives formulas for the evaluation of v (x) and 6 (x.y) 
'n n 

A.1.2 A special basis element 

In Section 1.1.3 Eq. (1.12b), we introduced a basis element 0„ ,(v) 
N-1 

which improves the approximation basis for A(v). The corresponding 

elementary angular flux mode of (1.13a) becomes explicitly 

(A.9) 

where 

%-l(^'^> = -2 
\ n / N V - x / v , y [ n f \ V - x / v , 0„ T (v) e ' dv + 0.. - (v) e dv J N-1 v-y J N-1 v-y 

Uv, N-2 

+ 8ij_i(v)X(y)e 
-x/y 

N-1 + V N-1 
3 ={ 

V l - b P = v̂ _̂  

which supplements (A.l). The parameter b is chosen to insure series 

convergence in the second integral of Eq. (A.9). 

The first Integral in (A.9) is evaluated exactly as the corresponding 

integral in (A.l) illustrated in Table A.l, except for one special case 

where y = v„_,. Here we define 

(A.10) 
3 v-v. 

Av„ o V—y ^ ^"^'^- = I^fV2(-) ^ (̂ -Vi,.2>V2(-'̂ >l 
N-2 _v -x/v 

•N-2 "N-2 
N-2 



T a b l e A . l C o m p u t a t i o n a l e q u a t i o n s f o r q ( x , y ) 

(A.6a) q ^ ( x , y ) =• 

(A.6b) 

n - i I- -1 n '- -i 

n = 0 , l , . . . , N - 2 , y ?t V , m = 0 , 1 , . . . , N - 1 
m 

q„(x,M) ' ^ t n - I < ' > J Av 
n 

Y„(x)] + B^(x ,y ) } + G^(x ,y) 

CO 

(A.6c) 

(A.6d) 

n = 1,2 N - 2 , y = V 
n 

qn(X ' l ' ) 
n - 1 ^ -J Av 

Y^(x) + (y-v^^^ )B^(x,y)l} + G^(x,y) 

n = 1 , 2 , . . . , N - 2 , y = V 

q ^ ( x , y ) 2 ^Av 
n - 1 

Y^ , ( x ) + ( y - v , ) 3 „ i ( x , y ) 
n - 1 n - i n—1 Av >H 

n - 1 

} + G^(x,u) 

n = 0 , 1 , . . . , N - 2 , y = V 
n+1 

(A.6e) q ^ ( x , y ) = -2 { Av 
Yn(x) + (y-v^^^)B^(x.y) } + G^(x ,y ) 

n = 0 , y = V 
where 

(A. 7) 

(A. 8) 

G ( x , y ) = 0 iM)X(v)e ""^^ 
n n 

3 j j (x ,y ) = I ^ ( ^ ' V 

n 



where 

(A.ll) 
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(V2'^^ f3 
ve-'^/^dv 

N-2 

(A.12) (V2'^^ r V -x/v. 
3j,_2(x,y) = I^ "-^ (x.y) = J ^ e "' 'dv. 

'N-2 

The second integral on the right side of (A.9) is a Cauchy principal 

value integral with singularity at y = v. It is denoted by G(x,y) where 

\iH, 

(A.13) G(x,y) = < 

N-1 

f V l ^ - V 2 V -x/v. 

r l-v i" V -x/v. 
IT î s dv. 

N-1 

Eq. (A.13) is evaluated using power series expansions which will be derived 

at the end of this section. The domain of integration is denoted by 

D . (p = 1.2.3,4,5) where the index p is determined by the location of 

y with respect to v .. and 1. To obtain rapidly converging series and 

to treat the singularity which occurs when v = y, the domains of integra

tion D are partitioned into a set of subdomains ISD ISD e D } , 

P ^ q' q P^P 
p = 1,2,3,4,5. There are five classes of subdomains SD , q = 1,2,3,4,5 

which may be applicable to the integration over D . The domains D and 

their partitions {SD } are illustrated in Table A.2. I qJp 

The integral in D belongs to a class of Cauchy principal value 

Integrals of the general form 

(A. 14) G(x.y) = P f g(v,y)e"''^''dv 

= e~^[G^p(l.y) - xG2p(l,y)] + x^G3p(x,y) 



Table A.2 Partitioning of the Integration Domains D^ for I(v,y) 

DOMAIN 
Subdomains Convergence Recommended Y 

VD 
CO 

\'- ^ ' Vl 

l>2-- Vi = Vjj_^ 

M J2l 
- 1 '» W Vjj_^ 1 

Av N-l^ 
b = min(AVjj_2, — J ^ ) / 2 - ^_ 

\-2 y 1 

°3= Vl' ^^ Vi-'n'Vi / 
b = y-v. N-1 

^N-2 ̂ N-1^ 

T) • V + -^Av , < y < 1 , "4' V l 13 V l ^ / 

b = f (1-y) 
V"2 V l '̂  ^ 

D^: y = 1 
/ 

/ 
/ _ ^ 

V 2 V l =̂̂  

D = {SD } 

D^ = {SD̂ .SDĵ } 

D = {SD^.SD^} 

SD : 1-Y < 1 

SDĵ : 1-Y < 1 

SD^: Y < 1 

SD : 1-Y < 1 

SD,: Y < 1 

D^ = {SD̂ ,SD2,SDĵ } 

D5 = {SD3} 

SDj 

SD, 

SD, 

SD, 

1 
4 

y = 2 

1 . . 3 
4 ' 4 

1-Y < 1 

Y < 1 

^ < 1 
1+Y 

unconditional 

Y = 

b = Y(i-y) 
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where g(v.y) will have the form (A.18) in this section; 

(A. 15) G^p(v.y) = P g(v'.y)dv' 

3 

(A.16) G2p(v,y) 

3 

V G (v',y) 
^ 5—dv' 
(V)^ 

(A. 17) G3p(v,y) ^ ^2p(^'^> -x/v, 
— ' ^ e dv 

3 

If we define 

(A.18) g(v,y) = 0.̂  ..(v) 
N-1^^ v-y 

then Eq. (A.14) corresponds to Eq. (A.13). Upon substituting (A.18) into 

(A.15) we can develop computational expressions for (A.15). (A.16) and 

(A.17). To simplify the resulting expressions we define the following 

integrals. Let 

(A.19) 

where 

(A.20) 

(A.21) 

I(v.y) = n V 0„ ,(v')-H-dv' 
N-1 V'-y 3 

= I-(v.y) + y I I (v,y) 
" SD eD ^ 

q P 

lo(v.y) = J ej^_^(v)dv 

Iq(v,y) = 
rmin(v^,v) 0^ ^(v') 

1 -^=i dv' 
v'-y 

V 
-q 

V and V are the respective upper and lower integration limits for sub-
q ~^ 
domain SD . Table A.3 summarizes the computational expressions for 

q 
(A.20) and the five subdomains for (A.21). Upon substitution of (A.19) 

into (A.15). the computational expression for (A.15) becomes 



Table A.3 Subdomain Integration Formulas 

Integration Formulas 0 < a < 1 Converfience b - y{l-v) 

V < V < V 
- q - - q 

Subdomain Range 

00 
CO 

(- '-V2>' 
2Av, N-2 

(A. 20a) l Q ( v , y ) = \ 

"N-1 

Vr^ 
y = V. N-1 

1 d -v ' ) " - ^^ 

0 

(A.21a) I^(v.y) =""^7=^ I " ^ 
Av„ , k = l 

a " ^a+k 

N-1 

t = 

P 9̂  V, 

l - v 
1-p 

N-1 

a+1 . a 

^ V l 
/ 

^ 1-H-b 
1-y 

(A.21b) l2(Vl- '^ 'Vl^ = ^ '" J l ® î̂ ^ 

a oo 2 k - l 
(1 -y ) V r ot •> t 

(A.21c) I„(y+b,y) = -2 ^^ I [2k-iJ "IkIT 
^^N-1 '^=^ 

t = l -v . N-1 

t = 0 

t = 1-y 

t = 0 

n 00 k - a 
* ( 1 - y ) V t 1 

(A.21d) I ^ ( v , y ) = - ^ ^l^ - ^ 

t = 

t = 

1-y 
l - v 

1-y 

^ - \ - i 

(A.21e) l 5 ( v , l ) = ^„ ( l - v ) " 
aAv. N-1 

t = V 

N-1 

1-Y < 1 

Y < 1 

Y < 1 

< 1 

SD : y < 1 

^ , = 1 
/ I 

1̂ ^' /rb-^7\ 
1̂ = ^̂^ i ^ i - 4 ^ T ^ 

S^2L^ = V l 
V2 = y+b 

^ 2 = Vi-b 

SD3: v^_^ < y < 1 

/ 

V „ y 1 
N-2 

V = y+b 

\i- = y -b 

^1/ \ 

1+Y 

u n c o n d i t i o n a l 

s^= 13 ̂ vi-^^^'^^' 
V, = y -b 

4 

/ I 

' N - 1 V 2 V i ^ 1 

/ 
/ / i^v 

V, = V. N-1 

SD^: y = 1 / 

V 2 V i ^ ^ 

t = V N-1 

V3 = l 

^5 = V l 

/ 

V V 
N-2 N-1 

y=l 

W e n 01=1 the s e r i e s term for k=l i s log t . 
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(A.22) G (v,y) = I (v,y) + y J i(v,y) p = 1.2.3,4,5 
*̂  C;T> cn q SD eD 

q P 

By definition (A.16) can be written 

i » 

(A. 23) G (v,y) = - ^ 0 . ( v " ) - ^ dv" 

3 '̂  '' 3 

It can be shown that the interchange of integration in (A.23) is valid, 

so that 

(A. 24) 

ft ,.ii (V ) 

which simplifies to 

(A.25) G (v.y) = I I (v,y) - ̂  G (v.y) . 
^ SD £D ^ ^ -̂P 

q p 

Substituting (A.22) into (A.25) we obtain 

(A.26) Gn(^'^> = ( l - v) ^ ^a^^'^^ " ̂  ^O^^'^') ' 
^ SD eD ^ ^ " 

q P 

Eq. (A.17) must be evaluated by numerical integration. The function 

G2 (v.y) in the integrand is a well behaved function as required for the 

interchange of integration to be valid in (A.23), so that the numerical 

integration is practical. We also note that the integration domain size 
_3 

Av^_, is typically on the order of 10 for the 0 .. (v) element, hence 

the truncation order associated with the numerical integration is 
-3k 

0(10 ) for quadrature rules of order k. The numerical integration 

formulas for each domain D are summarized in Table A.4. The quadrature 

points are chosen subject to the condition that any subdomain boundaries 

must coincide with a quadrature point (illustration in Table A.4). 

In the first quadrature interval for each domain D , the Integrand 

is approximated by a quadratic polynomial. It is easily shown that the 

integrand and its first derivative with respect to v are both zero when 



Table A.4 Numerical Integration of G (x.y) 

Integration Formula 

Goi(t,,,y) -x/t. 
(A.23a) G_,(x,y) •= I 

•̂ •̂  k = 0 

'21" k' 
\ 2 ^ 

Integration Parameters (k'-O.l K) Quadrature Points 

, ^ S2(^k'Vl^ - ^ / \ j 
(A.23b) G ( x , v ) = I 01 2 ^ 1 

^2 ^ ^ k=0 " t ^ 

0^ - { 1 , 2 , 4 , 1 } | , K=3 

\ ' ^ V r ^ ' V l ' V l ' ^ ' ^ ' ^ ^ ' b=inln(AVjj_2, -y^) 

W-i 
h 5b '^3"^1 ^3 ^2 
3 ' 6 ' 2 ' 2 

} , K=3 

o 

(A. 23c) G (x,M) = I to 2 ^ 
33 k=0 t ^ 

(A.23d) G ( x , y ) = I '"'v 2 ^ 

3^ k=0 ^ tf 

k̂ = fVl'^'^"^^'-^^' ^ " ^ " V l 

.b 5b 1 ^ i i ! i i K=T 
•̂ k ° U ' 6 ' 2 ' 2 ^' ^ "^ 

\ = { v j j _ ^ , y - b , y , y + b , l } , b = | ( l - y ) . K=4 

^A b "Hb / . . b h 
r_0 0 4b £ , _ 3 . ^ 1 . ^ ^ 

u)v = 1 3 ' 3 ' 3 ' 3 2 ' 2 ^ ' k rk 

K 
(A.23e) G ( x , l ) = I ( ^ 

S5(\'̂ ^ -" /^ 

3 ' 3 2 ' 2 

AVv 

k + r \ 

k̂ = V l + 1^' b = -f=^ 

' 3 3 - - . ^ 0 - t ^ 
^ { 1 , 2 , 4 , 1 } ^ , K=3 

N-2 N-1 
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V = 3. In the subsequent intervals, Simpson's rule is applied for equal 

mesh intervals when p = 1,4,5 and trapezoidal integration is applied for 

unequal mesh intervals when p = 2,3. 

Eq. (A.22) and (A.26) can be substituted into (A.14) to obtain 

(A.27) G(x,y) = e"''{(l+x)I (l,y) + [y-x(l-y)] I 1 (l,y)} + x \ (x,y) SD eD ^ 
q P 

3p' 

Substitution of (A.10) and (A.27) into (A.9) yields the general compu

tational expression 

(A. 28) qj^_^(x,y) = f[Yjj_2(x) + (v-Vjj_2) V2(x,y) + G(x,y)] + Gjj_^(x,y). 

The derivation of the series expressions for Eqs. (A.21a) to (A.21d) 

is now given. The series are of two types depending on whether or not 

the subdomain includes the singularity v = y. When y = 1 (i.e., SD^) the 

integral in (A.21) is evaluated directly. 

Consider the non-singular case first (i.e., SD- and SD,). The 

integral of (A.21) is expanded in the following series. 

(A.29a) 
(l-v)" (l-v)" 
v - y (1-y) - (l-v) 

= (1-y) 
a-1 t 

1 - t 
where t = -; < 1 

1 - y 

I.e., 

.0, 

(A.29b) -^^==^= (1-y)'̂ -̂  t M t̂  
v - y 

so that for SD., 

fV 

(A.30) I^(v,y) = — ^ 

Av N-1 

k=0 

g-^'')" dv' = -(^-^)°' 
l-v 

v ' - y Av, N-1 

1-y 
It dt 

k=0 

"N-1 
]-v. N-l 

where dv' = -(l-y)dt 1 - y 

I.e. 

.- .a 00 a+k 

(A.31) ii(v.y) = ̂ f ? ^ I ^ 
^Vi ^=^ 

l-v 

1-y 

-̂Vi 
1 - y 

^ < V l ^ -̂
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For SD, the subst i tut ion 4 

izli = i '''T^'T' dv - ̂  dz 

is made in (A.29a) and (A.30) so that 

(A.32) I^(v,y) = _(i-^) y 
n LA 

a 00 k-a 

, a , "- k-a 

^Vi =̂° 

1-y 
l-v 

1-y 
l-v N-l 

V l " ̂  < •̂ 
a 4 1 

Next consider the singular case (i.e., SD and SD^). The integral 

in (A.21) is separated into two integrals so that 

(A.33) Iq(v,y) = 

y+b 
Vi^^> 
v-y 

fy 

dv = 
Vl<^) 
v-y 

ry+b 

dv + 
Vi^^> 
v-y 

dv 

y-b y-b y 

When q=3 the change of variables s = v-y in (A.33) yields 

q = 2,3 

(A.34) 

Let 

l3(v,y) = (1-y) 

Av, i 
N-l 0 

( ( i - i ! ; r - { i - i ! 7 ) " i f 

(A.35) t = 1-y 

and expand the terms in braces in (A.34) so that 

(A.36a) (l+t)" = 1 + (Jt + (pt2 + (°)t3 +... 

(A.36b) (1-t)" = 1 . Q t + («)t2 - (pt3 +... 

Subtracting (A.36b) from (A.36a) and substituting the result into (A.34) 

we obtain 
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(A.37) l3(v,y) = 

i.e., 

(A.38) l3(v,y) = 

(1-y) 

Av. 

1-y 
a 
N-l 0 

{2l(?t+(«)t3+Qt^ +...]} ^ 

,a 00 2k-l 

,,a L l2k-l^ 2k-l 
V̂l ^'^ 

t = 
b 
1-y 

t = 0 

When q=2 the change of variables s = v-y in (A.33) yields 

(A.39) ^2^^'Vl^ = - H i - A e r ^ - d - M T - ) " } ^ . 
N-2 N-l 

Let 

(A.40) t = 
Av, N-l 

and expand the terms in braces in Eq. (A.39). Note that in this case the 

tenn corresponding to (A.36a) is simply 

Av, 
(A.41) 1 - t 

N-l 
Av. 
N-2 

and the second term is exactly given by (A.36b). Subtracting (A.36b) 

from (A.41) and substituting the result into (A.39) we obtain 

b 

(A.42) l2(v.y) = -

i.e., 

"*•"{[(?-4l]-''f̂ *̂'''5--}̂  

(A.43) l2(v.y) = -^ * XQ 
a-)(-t)' 

N-2 k=l 

t = 
Av N-l 

t = 0 

The series just derived for I (v,y), q = 1,2,3,4,5 are all conver

gent. The speed of convergence is dependent on the parameters y, b and Y 

which are related by the formula b-Y(l-y). Tables A.2 and A.3 include 

a sxnranary of the range of y values which will make the series converge. 
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Table A.2 Includes a column which simmiarizes recommended values of Y for 

rapid convergence. 

The selection of quadrature points for evaluating Eq. (A.17) in 

subdomains SD and SD is restricted to the subdomain endpoints due to 

the symmetric nature of the series evaluation. We can utilize Eq. (A.26) 

when y=v so that 

(A.44) G (v.v) = (1 - ̂ ) I I (v.v) - ̂  I (v.v) 
*̂  SD eD ^ 

q P 

i.e., 

(A.45) Sp̂ "'''̂  " " V ̂ 0̂ "'''̂  • 

Therefore, we can include the quadrature point v=y for domains D , D and 

D, which use SD or SD as illustrated in Table A.4. 

A.2 The Expansion for the Angular Flux Derivative 

A.2.1 The standard basis 

In Appendix A.1.1 we developed explicit expressions (A.6a) to (A.6e) 

to calculate {q (x,y)}, the elementary angular flux solutions. These 

results are extended to calculate 

(1) 9 
(A.46) y q^ '(x,y) = y — qjj(x,y) 

where q (x,y) is the derivative with respect to x of the elementary 

angular flux. The computational equations are the same as Eqs. (A.6a) 

to (A.6c) with the following modifications of the y (x), B (x,y) and 

G (x,y) terms. 

The Y (x) term becomes 
'n 

fv rv 
"+1 -x/v 

ve dv = -y 

n+1 , (V .V •) 
e dv = -yE (x). 

V V 

n n 
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The 3^(x,y) term becomes 

a3„(x,y) 
(A.48) y -iL = y A 

3x 9x 

rv n+1 
V -x/v, 
v-y ^ dv = -y 

rV 
n+1 -x/v 

_e 
v-y dv = 

n 

- -^ IQ (x,y), 

The G (x,y) term becomes 
n 

3G (x,y) „ , 
(A.49) y -S,,:: y A 6 (y)A(y)e-^/^ = -0 (y)A(y)e-^/^ 

9x 

When y=0, n=0, and x=0, a special limit case occurs in (A.48) and 

(A.49). Eq. (A.48) becomes 

(A.50) lim y 
y-*0 

83Q(0,y) 

9x 

(0,v ) 
-11m y I (0,y) = 11m y log y -> 0 
y->0 y-H) 

and Eq. (A.49) becomes 

3G (0,y) 
(A.51) 11m y —^^r lim y -^ 0-(O)A(O)e 

_ ox _ OX U 
y->0 y ^ 

-x/y 
= -1. 

x=0 

A.2.2 A special basis element 

The elementary angular flux derivative q^ ,(x,y) associated with the 

special basis element 0u_i(v) is calculated by differentiating Eq. (A.28) 

with respect to x. The resulting expression for -r— G(x,y) will be derived. 
oX 

The remaining terms have already been treated in section A.2.1. 

The derivative of G(x,y) in Eq. (A.27) becomes 
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(A.53) G^^\x,v) = ̂  G(x,y) 
dX 

= -e ""{xl (l,y) - [x(l-y)-l] I I (l,y)} + 
SD eD ^ 
q P 

2xG3p(x,y) - x^G^p^(x,y) 

where 

(A.34, 0<»U,„=-iLc3^<,.„, = f^24^.-/v 

The integration in G_ (x,y) is performed nvmierically using the formulas 

(A.23a) to (A.23e) that were used to integrate G (x,y) Eq. (A.17). The 
(1) ^ only difference between G_ (x.y) and G_ (x,y) is in the denominator of 

2 3p 3p 3 
the integrand. The t^ term is replaced by t in formulas (A.23a) to 

(1) 
(A.23e) to calculate G^ '^(x,y). 

A.3 The Expansion for the Scalar Flux 

A.3.1 The standard basis 

The elementary scalar flux is defined by 

(A.55) q̂ "-̂ (̂x) = I q (x,y)dy. 
n J '̂  

-1 

The normalization condition [Case 1967] 

fl 

i 

-1 

(A.56) *^(y)dy = 1 

assumed in the derivation of the general solution (1.4a) simplifies the 

development of q (x). 
n 

Substituting (A.l) into (A.55) and reversing the order of integra

tion in variables y and v, we find 
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(A.57) 

rV 

,<-"(=<) 
n v-v 

Av 
n-1 -x/v, 

e ' dv + 
n-1 

fV n+1 v - v , 
n+1 -x/v, 

~A^ ^ ^^ 
n n-1 

(n = 0,1 N-2) 

Av 
n-1 >-

r (v ,,v ) (v T,v ) -| 
E, - 1 - (X) - v^_^E2 -^' "'(x)^ 

"̂""'Vî  ^̂ n'Vi> n 
""̂ ^ (X) - v^E2 "" ^+^ (x) 

(v ,v ) 
where (A.56) was applied to the integration over y. The E (x) 

functions are described in Appendix B. 

The elementary scalar flux q^~ ^(x) is calculated by 
—n 

(A.58) ,<;»(x, . <,<-»(a-K> 

A.3.2 A special basis element 

The elementary scalar flux q (x) associated with the special 

basis element 0„ ,(v) is defined by 
N-l 

(A. 59) q ^ : f ( x ) = ^ 
N-2 1-

f (V2'Vl>, . /V2'Vl^ / 
^ (-) - V2^2 (̂) + G 

(-1 u 
where 

(A.60) G<-»(x, . 
rl , a 

"-Av, 
N-l 

"N-l 

The E^^'^(x) terms are derived in (A.57). 
n 

Similar to Eq. (A.14) we define the general class of integrals 

(A. 61) G<-"(x) -
fl 

f . -x/vj 
g(v)e dv 

"N-l 

-xr.(-l), ,(-1) 2o(-l) {G{-^^(1) -xG^--^^l)}+x^G^-^^x) 
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where g(v) has the form (A.65) in this section; 

(A.62) 

(A.63) 

(A.64) 

If we define 

G<-»(v) 

GW)(„) 

G<-»(., 

rv 
g(v')dv' 

N-l 

V G^-^^v') 

) (v')2 
dv' 

N-l 

1 G<-l>(v) . 
P̂ . e-^/^dv. 

N-l 

(A.65) s(. - (^) 

then Eq. (A.61) corresponds to Eq. (A.60). Upon substituting (A.65) into 

(A.62), we can develop computational expressions for (A.62), (A.63) and 

(A.64). 

The computational expression for (A.62) becomes 

(A.66) h ^""^ a+l Uv„ ,} N-l 
N-l 

By definition (A.63) can be written 

G^-^>(v) = ^ dv' '̂ ' 

(V) M2 J ^Vi 
(A.67) 

'N-l 'N-l 

Interchanging the integration of V and v" we find 

(A.68) G<-»(v) 
II a 

^Vi 
dv' 

,1, (V)^ 
N-l 
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which simplifies to 

(A.69) 

where 

G^-^\V) = I*(V)-1G;[-1>(V) 

(A.70) I (V) = l-v" "̂' dv" 
'•Av, 

N-l 
N-l 

Integrating (A.70) by parts we obtain 

(A.71) 

where 

(A.72) 

I (V) = log v"(^=^) 

Vl 

II . a 

^ I<-»<v) 

N-l 

I<-»(v) — J — f log v"(l-»")°"̂ dv" 
Av„ , •' N-l v. 

N-l 

l-v 

Av 
log(l-t)t°'"^ dt 

N-l l-v 
N-l 

l-v oo a+k-1 

Av„ . i. k=l 
N-l 1-Vjj_i 

dt 

Evaluating the last integral in (A.72), we obtain 

(A. 73) (-1) (v) ^ I 7^ 
a+k 

, o .til (a+k)k 

^Vi ̂ =̂  

t = l-v 

t = Av, 
N-l 

-̂3 
We note that t = Av„_, > l-v is typically on the order of 10 and is 

always less than .25 so that convergence is rapid in (A.73). 

Eq. (A.64) must be evaluated by numerical integration. The function 

Ĝ '' ^ (v) in the integrand is a well behaved function so that numerical 

Integration is practical. Four equally spaced quadrature points t, are 

chosen so that 
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(A.74) tĵ  = kh + Vjj_^ (k= 0,1,2.3), h 
V̂l 

The integrand is approximated by a quadratic polynomial in the 

first quadrature interval. It is easily, shown that the integrand and 

its first derivative with respect to v is zero when v = v„ ^. In the 
N—i 

subsequent intervals Simpson's rule is applied. The composite integra

tion formula for (A.64) becomes 

(A. 75) G '(x) = I (D — e 

3 k=0 ^ tf 
k 

where 

(A.76) {a)^|k=0,l,2,3} = {l,2,4,l}^ . 

Substitution of (A.69) into (A.61) yields the computational 

expression 

(A. 77) G^"^^(x) = e"''{(l+x)G^"^^(l) - xl*(l)} + x^ G^^^^x) 
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APPENDIX B 

Exponential Integrals and Related Functions 

B.l The Exponential Integral E (x) 

B.1.1 The general expression 

The classical exponential integral is 

(B.l) Ei(x) = -
-t 

\-dt (x ̂  0) 

-X 

where the integral is a Cauchy principal value integral when x > 0. 

The functions E (x) are generalization of the function 
n 

.00 — t 

(B.2a) E^(x) = J -S-^= -Ei(-x) (x > 0) 

X 

and are defined as follows. 

(B.3) E^(x) = x^-^ j ^ dt = f v'^-^e'^'^V (t = x/v) 

X '̂  0 

Using integration by parts it is easy to show that 

(B.4a) E^(x) = : ^ [e""" - xE^_^(x)] (n > 1) 

Using the FORTRAN routine DEI in the Argonne Applied Mathematics Division 

program library (Cody 1971) the function Ei(x) is computed on the IBM 

370/195 to roughly 50 correct significant bits which is equivalent to a 

relative error of 10~ . Eqs. (B.2a) and (B.4a) are used to calculate 

E (x) for n > 0. n 

B.l.2 Limit cases 

E (0) has two limit cases depending on the value of n. If n = 1, 
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(B.2b) E/0) = lim 
1 -x/v 
e 

dv = 
dv , 
— = log V 

i.e., the limit does not exist. If n > 1, then using (B.4a) we find 

E^(0) lim -^- [e"^ - xE ^(x)] 
_ n-1 n-l 

x->0 

-ir- [1 - lim x E T(X)] _ 
n-1 ^^0 ^"^ 

(B.4b) 

•"• [1 - 0+...+0 + lim x""-'"E (x)] 

E^(0) 

n-1 

1 
n-1 

x-K) 

(n > 1) 

where 

lim X E, (x) 
x->0 

IJ n-1, 
lim X log V 
x-K) 

= 0 (n > 1) 

B.l.3 The generalized exponential integral E ' (x) 
n 

We define the generalized exponential integral E * (x) by 
n 

(B.5) E^^'^'^x) = n 

fb n-2 -x/v, / ,̂  ,> , , «v V e dv (x>p, 0<a<b£l, n>0) 

= X 
n-1 

x/a -t 
dt (t = x/v) 

x/b 

We define E,. ' (x) as follows. 

x/b 

fOO .00 \ _ ^ 

e 
J 
.x/b x/i 

dt . 

Hence by (B.2a) we have 

(B.6a) E^^'^^x) = E^(x/b) - E^(x/a) 
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Integration by parts of (B.5) gives 

(B.7a) E^^'^^x) = - ^ [(b"-V^/^ - a"-^e-^/^) 

- xE^^'^>(x)] (n > 1) 

B.l.4 Limit cases for the generalized form 

We consider the limit cases of (B.6a) and (B.7a). First, when x=0 

and 0<a < b<l, we find from (B.5) and (B.2b) that (B.6a) becomes 

(B.6b) E^^'^^O) = 
rb 

— = log b/a 

and from (B.4b) and (B.6a) that (B.7a) becomes 

(B.7b) E^^'^>(0) = : ^ (b^-1 - a^-^ (n > 1) 

Secondly, when a=0 and x>0, (B.6a) becomes 

(B.6c) E{°'^^(X) = E^(x/b) 

and (B.7a) becomes 

(B.7C) E^O>^>(x) = ̂  [b-V^/^ - xE^O^^^x/b)] (n > 1) 

Finally, consider the case when x=0 and a=0. Then (B.6b) becomes 

(B.6d) E^^°'^\o) = lim log b/a -> "o 
-•• a-^0 

and (B.7b) becomes 
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(B.7d) 
,(0.b)(0) _ _ ^ 
n n-1 

(n > 1) 

B.2 The Exponential Integral I (x,y) 

B.2.1 The general expression 

The integral I (x,y) is defined (Abu-Shumays, 1973) by 

(B.8) 
fl n -x/v 

I (x,y) = ^̂ -̂̂  dv (n>0, x>0, |y|<l) 
n J v-y — — I • 

0 

It is easily shown that the following recursion relation holds, 

(B.9) I^^j^(x,y) - yl^(x,y) = 
n -x/y _ „ / V 
V e ^ = E^2('^) (n > 0) 

We obtain lQ(x,y) from (B.8) as follows. 

(B.IO) lQ(x,y) = 
fl -x/v e 

v-y 
dv = 

e 
dt - e 

00 - t 
e 

u u 
t ( l - ^) 

X 
, r°° - T 

:/y 

-

e 
T 

[x/y - x) 

< ' -7 ) 

dT (T = t - -) 
y 

Hence, using (B.l) and (B.2a) in (B.IO) 

(B.lla) lQ(x,y) = E^(x) + e ^^^ Ei(x/y - x) . 

Rearrangement of (B.9) yields the following recursion relation for n>0. 

(B.12a) I (x,y) = E (x) + yl -(x,y) (n > 0) 
n n+1 n-l 
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B.2.2 Limit cases 

We consider the limit cases of (B.lla) and (B.12a). When x=0 and 

ŷ 'O, \i^l, then for n=0 (B.8) yields 

I (0,y) = lim 
" x->0 

1 - x/v 
e 
v-y dv = 

dv 
J v-y 

(B.llb) lQ(0,y) = log 1 ^ . 

Next, recalling (B.4b), equation (B.12a) becomes 

(B.12b) 1^(0,y) = 1/n + yl̂ _ĵ (0,y) (n > 0) 

When y=0. then if n=0 and (B.3) is used in (B.8) 

(B.llc) Io(x,0) = 
J 
0 

1 - x/v 
dv = ET (X) . (x > 0) 

V 1 

and using (B.llc) in (B.12a) yields 

(B.12c) l^(x.O) = Ê _̂ (̂x) (n > 0) 

The case when x=0 and y=0 is directly obtained from (B.2b) and 

(B.4a) in (B.12c) and yields 

(B.12c) ln(0»0) = < 

oo n = 0 

1/n n > 0 

Finally, when y=l, (B.lla) does not exist, i.e.. 

(B.12e) I„(x,l) -> (n = 0.1.2....) . 
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B.2.3 The generalized exponential integral I * (x.y) 

Similar to E^^' ̂ (x) Sect. B.l.3, we define the generalized integral 

(B.13) 
T.(a,b), . _ 
I^ '(x,y) = 

b n - x/v 
^ ̂  _ dv (x>p, |y|ll, n>_0, 0<a<b£l) 

Using (B.13) and (B.5), the recursion formula (B.9) is generalized 

to 

(B.14) I^+i^\x.y) -yl^"'^^x,y) = 
n -x/y, _ „(a,b), . / ^ n\ 
V e dy = E^2 (̂^ ^^ - °) 

Irt ' (x,y) is derived as follows: 

I^"''\x,y) = 
fb -x/v e 

v-y 
dv 

(r - r 
\o 0> 

b fa\ -x/v e 
v-y dv 

(B.15) I^^'^^x,y) = lj(x,y) - lj(x,y) 

where from (B.IO) with the integration limit 1 replaced by b we find 

(B.16) lo(x.y) 
/•b -x/v _ , 

^^j:^ dv = E^(x/b) + e ""'^EKx/y - x/b) 

The definition 

(B.17) Ei^^'^\x/y - x) E Ei(x/y - x/b) - Ei(x/y - x/a) 

combined with (B.16) in (B.15) yields 

(B.18a) I$^'^\x,y) = E[^'^\X) + e-^/^El^^'^^x/y - x) 
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Rearrangement of (B.14) yields the recursion relation 

(B.19a) I^^'^^x.y) = E^^^^^x) + yl^f^^\x,y) (n > 0) . 

B.2.4 Limit cases for the generalized form 

We consider the limit cases of (B.18a) and (B.19a). When x=0 and 

y/0, ŷ 'a, ŷ b in (B.13), we find 

b ^r'<°-)=r^^^ 
a 

i.e., 

(B.18b) l$"'^\0,y) =log 1^1 

and 

(B.19b) l^^'^^0,y) = E^J'^'^O) + Mllt]^\0,^^) (n > 0) 

When y=0?̂ a and x>0, we find from (B.13) and (B.14) that 

(B.18C) l^"'^^x,0) =E^^'^^x) 

and 

(B.19C) l^^''^x,0) = E^Ji^^x) (n>0) . 

When x=0 and y=07fa, (B.13) yields 

(B.18d) I^^'^^O.O) = log b/a 

and 
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(B.19d) I^^'^^O.O) = E^ll^ho) (n > 0) 

When y=a?̂ 0 we find 

(B.18e) I^^'^\x,a) 
,(a,b). . _̂  _-x/a 

{E^^'^^X) + e'^^^LEKx/a - x/b) - lim Ei(x/y - x/a)]} 
y-*-a 

since 

lim 
e-*0 

Ei(e) 

When n>0 we have 

l(^'^>(x,a) = E ( J ' ^ > ( X ) +al^!i^\x,a) 

(B.19e) li^'^>(x,a) = E^i^>(x) + aX^^^\x,a) 

Analogous formulas can be developed for the case y=b and a?*0 with 

precisely the same results for the limits. When y=a=0 we find from (B.6a), 

(B.18c) and (B.19c) that 

(B.19f) l(°'^\x,0) =< n 

x=0 

E^_^^(x/b) x'fO 

n > 0 . 

When y=b and a=0 we find from (B.18e) that 

(B.18g) 1 Q (x,b) E^(x/b) + e ^^^(lim Ei(x/y - x/b)) 
y-̂ b 

and 

(B.19g) I^°''\x,b) 
n Ej^+^(x/b) + bl^°^^^x,b) -> -
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NOMENCLATURE 

Symbol Description 

a Width of computational cell. 

a Combining coefficients for elementary solutions q (x,y). 

a Combining coefficients for elementary solutions q (x,y). 
-n ^ —n 

After defining a , subsequent references to a denote 
a 
-n 

a Exponent of Chapeau function 6»j_i (v) in q ..(x,y) mode 

for v„ - < V < 1 (0 < a < 1). 
N-l — — — 

c(x) Macroscopic mean number of secondaries per collision. 

D(0,a) Denotes the domain 0 ^ x ^ a and |y| <_ 1. 

f,. (0,y) ,f-(a,y) Inhomogeneous boundary term for incident flux boundary 

condition. 

y Angular direction cosine. 

i|;(x,y) ,(t)(x) Neutron angular (scalar) flux distribution at location 

X with direction cosine y. 

ii (x,y) Even parity neutron angular flux distribution for the 

symmetrized transport equation. 

jK ._̂  Neutron angular (scalar) flux distribution located on 

the mesh nodes for the benchmark cell modes analysis. 

'Ĵ g(x,y) ,()>g(x) Neutron angular (scalar) flux distribution for exact 

benchmark problem. 

JP^.l^ Neutron angular (scalar) flux distribution obtained by 

approximate numerical methods. 

illgjig Neutron angular (scalar) flux distribution error. 

Jl!j^>ij^ Neutron angular (scalar) flux distribution for multicell 
reference problem. 

qO*(x»y) Elementary asymptotic neutron angular flux solution. 

q+^(x.y) Elementary asymptotic and transient neutron angular 

flux solution. 
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Symbol Description 

S(x,y) Distributed neutron source at location x with direc

tion cosine y. 

a(x) Macroscopic total cross section. 

6 (v) Chapeau function base functions for expansion of A(v) 

V Transient eigenvalue spectrum of the homogeneous 

transport equation. 

V ± As3nnptotic eigenvalues of the homogeneous transport 

equation. 

X Spatial position coordinate. 

Subscripts Description 

1 Index of spatial variable x, 1=1,2,...,I. 

m Index of angular direction cosine y, m=l,2,...,M. 

n Index of elementary solutions (modes), n=0,l,...,N 

and transient eigenvalue spectrum variable v. 

0~ Index of as3miptotic elementary solutions. 
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